DOI QR코드

DOI QR Code

The Effects of Processing Variables on Gas Penetration in Gas-Assisted Powder Injection Molding(GAPIM)

가스분말사출성형에서 공정조건 변화가 중공부 형성에 미치는 영향

  • 김동한 (한국생산기술연구원, 금형.성형연구그룹) ;
  • 박형필 (한국생산기술연구원, 금형.성형연구그룹) ;
  • 이계환 ;
  • 차백순 (한국생산기술연구원, 금형.성형연구그룹) ;
  • 최재혁 (아주대학교 기계공학과) ;
  • 이병옥 (아주대학교 기계공학과) ;
  • Received : 2011.11.25
  • Accepted : 2012.02.09
  • Published : 2012.04.01

Abstract

Gas-assisted injection molding(GAIM) produces parts with hollow internal sections. The technique offers benefits to powder injection molding(PIM), with lower material usage and reduced time for de-binding processes. In this study, the effects of processing parameters on gas penetration length of gas-assisted powder injection molding(GAPIM) were investigated for SUS316L stainless steel powder feedstock. Experiments were planned based on the Taguchi method, involving processing variables such as melt temperature, shot size, gas pressure, and gas delay time. The most significant parameters affecting gas penetration length were gas delay time and shot size, while the effects of melt temperature and gas pressure was relatively insignificant.

Keywords

References

  1. R. M. German, A. Bose, 1997, Injection Molding of Metal and Ceramics, Metal Powder Industries Federation, Princeton, NJ, pp. 11-24.
  2. P. J. Vervoort, R. Vetter, J. Duszczyk, 1996, Overview of Powder Injection Molding, Adv. Perform. Mater., Vol. 3, No. 2, pp. 121-151. https://doi.org/10.1007/BF00136742
  3. L. Qingfa, 2000, Gas-assisted PIM, SIMTech Technical Report, pp. 1-9.
  4. W. Michaeli, C. Hopmann, 2000, New Perspectives for Ceramic Injection Molding with Gas Injection, Adv. Eng. Mater., Vol. 2, No. 12, pp. 827-832. https://doi.org/10.1002/1527-2648(200012)2:12<827::AID-ADEM827>3.0.CO;2-6
  5. K. Lee, M. De Hoyos, S. Ahn, R. Nambiar, M. A. Gonzalez, S. J. Park, R. M. German, 2010, Gas-Assisted Powder Injection Molding: A Study on the Effect of Processing Variables on Gas Penetration, Powder Technol., Vol. 200, No. 3, pp. 128-135. https://doi.org/10.1016/j.powtec.2010.02.013
  6. R. Malloy, 1994, Plastics product design for injection molding, Hanser Publishers, New York, pp. 108-113.
  7. M. A. Parvez, N. S. Ong, Y. C. Lam, S. B. Tor, 2002, Gas-assisted Injection Molding: The Effects of Process Variables and Gas Channel Geometry, J. of Mater. Process. Technol., Vol. 21, No. 1, pp. 27-35.
  8. R. Urval, S. Lee, S. V. Atre, S. J. Park, R. M. German, 2008, Optimisation of Process Conditions in Powder Injection Moulding of Microsystem Components using a Robust Design Method: Part I. Primary Design Parameters, Powder Metall., Vol. 51, No. 2, pp. 133-142. https://doi.org/10.1179/174329008X284796
  9. N. S. Ong, H. L. Lee, M. A. Parvez, 2001, Influence of Processing Conditions and Part Design on the Gas-Assisted Injection Molding Process, Adv. Polym. Tech., Vol. 20, No. 4, pp. 270-280. https://doi.org/10.1002/adv.10000
  10. S. Y. Yang, C. T. Lin, J. H. Chang, 2003, Secondary Gas Penetrations in Ribs during Full-shot Gas-Assisted Injection Molding, Adv. Polym. Tech., Vol. 22, No. 3, pp. 225-237. https://doi.org/10.1002/adv.10051
  11. J. P. Beaumont, J. H. Young, M. J. Jaworski, 1999, Mold Filling Imbalances in Geometrically Balanced Runner Systems, J. Reinf. Plast. Compos., Vol. 18, No. 6, pp. 572-590. https://doi.org/10.1177/073168449901800609