DOI QR코드

DOI QR Code

Cost Reduction Measure for River Water Quality Management by Cooperation between Local Governments:a Case of the Youngsan River

지자체간 협조를 통한 하천수질관리 비용절감 방안: 영산강을 대상으로

  • 여규동 (인하대학교 수자원시스템연구소) ;
  • 조은희 (경기개발연구원 환경연구부) ;
  • 정영훈 (인하대학교 수자원시스템연구소) ;
  • 이충성 (한국수자원공사 기술지원센터)
  • Received : 2012.05.10
  • Accepted : 2012.08.07
  • Published : 2012.09.15

Abstract

Current TMDL based on the 'Polluter Pays Principle' in Republic of Korea is individually operated by each local government for the designed allocated pollution load of unit watershed and unit district. However, unlike the motion of the air contaminants, the polluted contaminants in a river move from upstream to downstream, and a river can affect to districts more than two. In addition, a decision making on the construction of a sewage treatment facilities follows the concept of 'economy of scale'. These reasons support the collaboration among local governments in order to reduce the costs in improving water quality. This study suggested a method to reduce water quality management cost by redistributing reduction load considering cost-effectiveness for an entire watershed. The assessment on the suggested method is conducted in Youngsan river watershed. Without variation in total load, reduction load assigned for unit watershed and unit district is retributed in the region where pollutant source is concentrated, and then water quality and cost reduction improved from the redistribution of reduction load is analyzed. The results show that the cost saved by the suggested method is KRW 124 billion for scenario-1 and 172 billion for scenario-2 considering total cost of KRW 788 billion for the existing plan. We expect that the suggested method is a good example to reduce water quality management cost in local governments for TMDL.

현행 수질오염총량관리제는 원인자부담원칙를 기본으로 설정된 단위유역별 지자체별 할당부하량을 해당 지자체가 개별적으로 대처하도록 하고 있다. 그러나 하천으로 유입되는 수질오염물은 공기오염물과 달리 상류에서 하류로 일방적으로 흐르고, 하나의 하천에 다수의 지자체가 연관이 되어 있으며, 일반적인 하수처리시설은 '규모의 경제'를 따르는 시설물임을 감안한다면 지자체간 협조를 통해 수질관리비용을 절감할 수 있다. 본 연구는 유역 전체의 관점에서 비용효과를 가질 수 있도록 삭감량을 재배분함으로써 수질관리비용을 절감하는 방법을 제시하였다. 이를 위해 영산강 유역을 대상으로 현재 단위유역별 지자체별로 할당된 계획삭감량을 총량의 증감없이 오염원이 집중된 지역으로 재배분하여 발생하는 수질개선 효과와 비용절감 효과를 분석하였다. 분석결과, 기존 계획에 의한 영산강 유역 전체의 비용은 787,575.0 백만원이며, 시나리오-1과 2는 각각 123,671.8 백만원, 171,433.5 백만원의 비용이 절감되었다. 본 연구는 오염총량관리제를 준수하기 위한 지자체의 수질관리 비용을 절감하는 방안으로서 사례가 될 것으로 기대된다.

Keywords

References

  1. 영산강물환경연구소(2009) 영산강섬진강수계 수질오염총량관리 업무편람.
  2. 한국개발연구원(2008) 예비타당성조사 수행을 위한 일반지침 수정.보완 연구(제5판).
  3. 한국개발연구원(2010) 2009년도 예비타당성조사 보고서 영산강유역 농업용저수지 둑높임사업.
  4. 한국환경정책.평가연구원(2008) 수질오염총량관리를 위한 배출권거래제 도입방안.
  5. 환경부(1985-2010) 하수도통계.
  6. 환경부(2007) 국가하수도종합계획('07-'15).
  7. 환경부(2011) 공공하수처리시설 운영관리실태 분석결과.
  8. 환경부(2011) 수질오염총량관리제도.
  9. Brill, E.D., Eheart, J.W., Kshirsagar, S.R., and Lence, B.J. (1984) Water quality impacts of biochemical oxygen demand under transferable discharge permit programs. Water Resources Research, 20(4), 445-455. https://doi.org/10.1029/WR020i004p00445
  10. Crocker, T.D. (1966) The structuring of atmospheric pollution control systems. In H. Wolozin (Ed.), The economics of air pollution, 61-68.
  11. Dales, J.H. (1968) Land, water, and ownership. The Canadian Journal of Economics, 1(4), 791-704. https://doi.org/10.2307/133706
  12. Eheart, J.W. (1980) Cost efficiency of transferable discharge permits for the control of BOD discharges. Water Resources Research, 16, 980-989. https://doi.org/10.1029/WR016i006p00980
  13. Eheart, J.W., Brill, E.D., Jr., Lence, B.J., Kilgore, J.D., and Uber, J.D. (1987) Cost efficiency of time varying discharge permit programs for water quality management. Water Resources Research, 23(2), 245-251. https://doi.org/10.1029/WR023i002p00245
  14. Hung, M. and Shaw, D. (2005) A trading-ratio system for trading water pollution discharge permits. Journal of Environmental Economics and Management, 49, 83-102. https://doi.org/10.1016/j.jeem.2004.03.005
  15. Karamouz, M., Zahraie, B., and Kerachian, R. (2003) Development of a master plan for water pollution control using MCDM techniques: Acase study. Water International IWRA, 28(4), 478-490. https://doi.org/10.1080/02508060308691725
  16. Ng, T.N. and Eheart, J.W. (2005) Effects of discharge permit trading on water quality reliability. Journal of Water Resources Planning and Management ASCE, 31(2), 81-88.
  17. Ning, S. and Chang, N. (2007) Watershed-based point sources permitting strategy and dynamic permit trading analysis. Journal of Environmental Management, 84(4), 427-446. https://doi.org/10.1016/j.jenvman.2006.06.014
  18. O'neil, W.B. (1983) Transferable discharge permits trading under varying stream conditions: A simulation of multi-period permit market performance on the Fox River, Wisconsin. Water Resources Research, 19, 608-612. https://doi.org/10.1029/WR019i003p00608
  19. Sado, Y., Boisvert, R.N., and Poe, G.L. (2009) Potential cost savings from discharge permit trading to meet TMDLs for phosphorus in the passaic river watershed. Water Resources Research, 46, W02501, 12 pp.
  20. Tao, W. (1995) Water Pollution control and sustainable development in the upper nanpan river basin in yunnan province, china. Asian Journal of Environmental Management, 3(2), 119-127.
  21. Tao, W. (1996) Review of tradeable discharge permit system and its prospective application. Advances in Environmental Science (in Chinese), 4(6), 22-31.
  22. Tao, W., Zhou, B. Barron, W.F., and Yang, W. (2000) Tradeable discharge permit system for water pollution-case of the upper nanpan river of china. Environmental and Resource Economics, 15, 27-38. https://doi.org/10.1023/A:1008348400728
  23. Xu, H. (1996). Policy and preliminary practices of water pollutant discharge trading. Shanghai Environmental Science (in Chinese), 15(3), 1-3.