DOI QR코드

DOI QR Code

Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach: Honeycomb Pattern of Waves

수치모의를 통한 해운대 이안류의 주요 메커니즘 연구: 파랑의 벌집구조

  • 최준우 (한국건설기술연구원 하천해안연구실) ;
  • 박원경 (한양대학교 대학원 건설환경공학과) ;
  • 배재석 (한양대학교 대학원 건설환경공학과) ;
  • 윤성범 (한양대학교 공학대학 건설환경공학과)
  • Received : 2012.05.31
  • Accepted : 2012.08.16
  • Published : 2012.09.15

Abstract

Two regular progressive wave trains, the directions of which are slightly different from each other, develop a honeycomb pattern of wave crests due to their nonlinear interaction. In the honeycomb pattern of wave crest, the nodal line area, which has very low wave energy, is formed. When the honeycomb pattern is developed near the beach area, rip current evolves through the nodal line area formed in the cross shore direction. In this study, to confirm that the formation of honeycomb pattern of waves near the beach area is a dominant mechanism of rip current occurred at Haeundae beach, we performed a numerical simulation of nearshore circulation at Haeundae beach under an unidirectional and monochromatic wave condition by using a nonlinear Boussinesq equation model. As a result, wave refraction due to topographical characteristics (i.e., submerged shoal) of Haeundae gave rise to several wave trains propagating with slightly different directions toward the beach, and consequently rip currents well developed through the nodal line area of honeycomb patterns of wave crest. In addition, we found that a narrow-banded spectral wave condition (i.e., a swell spectrum) increases more likelihood of rip current than a broad-banded spectral wave condtion based on the simulations employing various wave spectra with an equivalent wave height and period.

파향이 약간 다르게 진행하는 두 규칙파는 비선형적 상호작용에 기인하여 파봉선이 벌집구조와 유사한 모습을 갖는 현상이 발생하고, 벌집구조 모양의 파봉선 사이에 일정하게 파랑에너지가 매우 낮게 유지되는 노드선 영역이 생성된다. 이러한 파봉선 벌집구조 모양이 해변에 형성되면, 해안선 직각방향으로 생성되는 노드선 영역을 통하여 이안류가 발달하게 된다. 본 연구에서는 해변가에 형성되는 벌집구조 파봉선 현상이 해운대에서 발생하는 이안류의 주요한 메카니즘임을 확인하기 위하여, Boussinesq 파랑모형을 이용하여 일방향 규칙파에 의한 해운대 연안흐름의 수치해석을 수행하고 이를 분석하였다. 그 결과, 해운대 앞바다의 해저천퇴에 따른 파랑굴절로 파향이 서로 약간 다른 파랑들이 해안에 전파되고, 이에 따라 벌집구조가 형성되어 노드영역을 따라 이안류가 매우 잘 발달함을 확인할 수 있었다. 또한, 일정한 파고와 주기를 갖는 다양한 폭의 스펙트럼에 따른 불규칙파 수치모의를 수행하므로, 폭이 넓은 스펙트럼 파랑조건보다 규칙파에 가까운 폭이 좁은 스펙트럼의 파랑조건에서 이안류가 더 잘 발달하는 것을 확인하였다.

Keywords

References

  1. 김인철, 이주용, 이정렬(2010) 해운대 해수욕장의 이안류 발생기구 및 수치모의. 한국해안.해양공학회 논문집, 한국해안.해양공학회, 23(1), 70-78. https://doi.org/10.9765/KSCOE.2011.23.1.070
  2. 윤성범, 권석재, 배재석, 최준우(2012) 관측자료 분석과 수치모의에 의한 해운대 이안류 발생 특성 연구. 대한토목학회 논문집, 대한토목학회, 제32권 제4호.
  3. 최준우, 박원경, 윤성범(2011) Boussinesq 방정식 모형을 이용한 해운대 이안류 수치모의. 한국해안.해양공학회 논문집, 한국해안.해양공학회, 제23권 제4호, pp. 276-284. https://doi.org/10.9765/KSCOE.2011.23.4.276
  4. Bowen, A. (1969) Rip currents 1. Theoretical investigations. J. Geophys. Res., 74(23), 5479-5490. https://doi.org/10.1029/JC074i023p05479
  5. Bowen, A. and Inman, D. (1969) Rip currents 2. Laboratory and field observations. J. Geophys. Res., 74 (C3), 5479-5490. https://doi.org/10.1029/JC074i023p05479
  6. Chen, Q., Dalrymple, R., Kirby, J., Kennedy, A., and Haller, M. (1999) Boussinesq modelling of a rip current system. J. Geophys. Res., 104, 20617-20637. https://doi.org/10.1029/1999JC900154
  7. Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A., and Chawla, A. (2000) Boussinesq modeling of wave transformation, breaking and runup. II: 2d. J. Wtrwy., Port, Coast. and Ocean Eng., 126 (1), 48-56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
  8. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., and Thornton, E.B. (2003) Boussinesq modeling of longshore current. J. of Geophys. Res., 108(C11), 26-1-26-18.
  9. Choi, J. and Yoon, S.B. (2011) Numerical simulation of nearshore circulation on field topography in a random wave environment. Coastal Engineering, Vol. 58, pp. 395-408. https://doi.org/10.1016/j.coastaleng.2010.12.002
  10. Dalrymple, R.A. (1975) A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, 3485-3487. https://doi.org/10.1029/JC080i024p03485
  11. Dalrymple, R.A. (1978) Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, 1414-1427.
  12. Dalrymple, R.A. and Lozano, C. (1978) Wave current interaction models for rip currents. J. Geophys. Res., 83(C12), 6063. https://doi.org/10.1029/JC083iC12p06063
  13. Dalrymple, R.A., MacMahan, J.H., Reniers, A.J.H.M., and Nelko, V. (2011) Rip Currents. Annu. Rev. Fluid Mech., 43, 551-581. https://doi.org/10.1146/annurev-fluid-122109-160733
  14. Goda, Y. (2010) Random seas and Design of Maritime Structures, 3rd Ed., Advanced Series on Ocean Eng., 33, World Scientific Publishing Co. Pte. Ltd.
  15. Haas, K., Svendsen, I., Haller, M., and Zhao, Q. (2003) Quasithree-dimensional modeling of rip current systems. J. Geophys. Res., 108(C7), 3217. https://doi.org/10.1029/2002JC001355
  16. Johnson, D. and Pattiaratchi, C. (2006) Boussinesq modelling of transient rip currents. Coastal Engineering, 53, 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  17. Kuik, A.J., van Vledder, G.Ph., and Holthuisen, L.H. (1988) A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 1020-1034. https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2
  18. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and Rikiishi, K. (1975) Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr., 5, 750-760. https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  19. Noda, E.K. (1974) Wave induced nearshore circulation. J. Geophys. Res., 79 (1974), 4097-4106. https://doi.org/10.1029/JC079i027p04097
  20. Shepard, F.P. (1936) Undertow, rip tide or "rip current", Science, 21, 181-182.
  21. Tang, E.-S. and Dalrymple, R.A. (1989) Nearshore circulation: rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, 205-230.
  22. Wei, G., Kirby, J., Grilli, S.T., and Subraymanya, R. (1995) A fully non-linear Boussinesq model for surface waves: I. Highly nonlinear, unsteady waves. J. Fluid Mech., 294, 71-92. https://doi.org/10.1017/S0022112095002813
  23. Yu, J. and Slinn, D. (2003) Effects of wave-current interaction on rip currents. J. Geophys. Res., 108 (C3), 3088, doi:10.1029/2001JC001105.

Cited by

  1. Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions vol.27, pp.4, 2015, https://doi.org/10.9765/KSCOE.2015.27.4.238
  2. Numerical Study of Rip Current Generation Mechanism at Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-032.1
  3. Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation vol.46, pp.2, 2013, https://doi.org/10.3741/JKWRA.2013.46.2.205
  4. Study of Rip Current Warning Index Function according to Real-time Observations at Haeundae Beach in 2012 vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1191
  5. Study of Rip Current Warning Index Function Varied according to Real-time Observations vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.477
  6. A Rip Current Warning System Based on Real-Time Observations for Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-011.1
  7. Non-hydrostatic Modeling of Wave Transformation and Rip Current Circulation: A Case Study for Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-033.1
  8. Analysis of Beach Safety Perception and Satisfaction among Haeundae Beach Visitors through CIT Method vol.72, 2014, https://doi.org/10.2112/SI72-020.1
  9. Numerical Study on Rip Current Likelihood according to the Beach Nourishment in the Haeundae Coast vol.15, pp.5, 2015, https://doi.org/10.9798/KOSHAM.2015.15.5.239