DOI QR코드

DOI QR Code

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling

조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도

  • 신동구 (명지대학교 토목환경공학과) ;
  • 조은영 (명지대학교 토목환경공학과)
  • Received : 2012.06.21
  • Accepted : 2012.08.19
  • Published : 2012.11.15

Abstract

The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

비세장 복부판을 갖고 균일모멘트를 받는 HSB 강재가 적용된 플레이트거더의 비탄성 횡비틀림좌굴 영역 휨강도 특성을 비선형 유한요소해석으로 분석하였다. HSB600 및 HSB800 강재로 제작된 균질단면 강거더와 HSB800 강재와 SM570-TMC 강재를 함께 적용한 하이브리드단면 거더를 고려하였으며, 일반강재와의 상대 비교를 위하여 SM490-TMC 강거더에 대한 해석도 수행하였다. 해석대상 비합성 I-거더 단면의 플랜지와 복부판을 쉘요소로 모델링하고 ABAQUS 프로그램을 이용하여 재료 및 기하학적 비선형 유한요소해석을 수행하였다. 강재는 탄소성-변형경화 재료로 모델링하였고 초기변형과 단면의 잔류응력을 고려하였으며, 이들이 비탄성 횡비틀림좌굴 영역에서 휨거동에 미치는 영향을 분석하였다. HSB 고강도강을 적용한 플레이트거더의 FE 해석과 한계상태법 도로교설계기준, AASHTO LRFD, Eurocode 등 국내외 주요 설계기준에 의한 공칭휨강도와 비교하고 이들 설계기준을 평가하였다.

Keywords

References

  1. 국토해양부(2012) 도로교설계기준(한계상태설계법), 한국도로교통협회.
  2. 김종민, 황민오, 강영종(2010) 고강도강 플레이트거더의 횡-비틀림 좌굴, 한국강구조학회 학술대회발표집, 한국강구조학회, pp. 79-80.
  3. 김종민, 황민오, 강영종(2011) HSB800급 고성능강 적용 하이브리드 I형 거더의 횡-비틀림 좌굴, 한국강구조학회 학술대회발표집, 한국강구조학회 pp. 123-124.
  4. 조은영, 신동구(2012) HSB 강거더의 비탄성 횡비틀림좌굴에 의한 휨강도 - 세장 복부판 단면, 한국강구조학회논문집, 한국강구조학회, 제24권 제2호, pp. 217-231. https://doi.org/10.7781/kjoss.2012.24.2.217
  5. Adams, P.F., Lay, M.G., and Galambos, T.V. (1965) Experiments on high strength steel members, Welding Research Council Bulletin No. 110, November, pp. 1-16.
  6. American Association of State and Highway Transportation Officials (2012) AASHTO LRFD Bridge Design Specifications, 6th Ed., Washington, D.C.
  7. AWS (2008) Bridge Welding Code, AASHTO/AWS D1.5: 2008, Joint Publication of American Association of State Highway and Transportation Officials and American welding Society.
  8. Celigoj, C. (1979) Influence of initial deformations on the carryingcapacity of beams. Stahlbau, Vol. 48, pp. 69-75, 117-121.
  9. Choi, B.H. and Park, Y.M. (2010) Inelastic buckling of torsionally braced I-girders under uniform bending, II: Experimental study. Journal of Constructional Steel Research, Vol. 66, pp. 1128-1137. https://doi.org/10.1016/j.jcsr.2010.02.005
  10. Earls, C.J. (1999) On the inelastic failure of high strength steel i-shaped beams. Journal of Constructional Steel Research, Vol. 49, No. 1, pp. 1-24. https://doi.org/10.1016/S0143-974X(98)00204-1
  11. Earls, C.J. (2001) Constant moment behavior of high performance steel i-shaped beams. Journal of Constructional Steel Research, Vol. 57, No. 7, pp. 711-728. https://doi.org/10.1016/S0143-974X(01)00012-8
  12. Eurocode 3 (2003) Design of steel structures. Part 1-1: General rules and rules for buildings, ENV 1993-1-1.
  13. Eurocode 3 (2006) Design of steel structures. Part 1-5: Plated structural elements, ENV 1993-1-5.
  14. Galambos, T.V. (1963) Inelastic lateral buckling of beams, Journal of the Structural Division, ASCE, Vol. 89, No. ST5, pp. 217-242.
  15. Galambos, T.V. (1998) Guide to Stability Design Criteria Metal Structures, 5th Ed., Wiley.
  16. Hibbit, Kalsson & Sorensen Inc. (2008) ABAQUS/CAE Version 6.8. Standard user's manual, Rhode Island (USA).
  17. Lay, M.G. and Galambos, T.V. (1965) Inelastic steel beam under uniform moment. Journal of the Structural Division, ASCE, Vol. 91, No. ST6, pp. 67-93.
  18. Lee, G.C. and Galambos, T.V. (1962) Post-buckling strength of wide-flange beams. Journal of the Engineering Mechanics Division, ASCE, Vol. 88, No. EM1, pp. 59-75.
  19. Lindner, J. (1974) Influence of residual stresses on the Load-Carrying capacity of I-Beams. Stahlbau, Vol. 43, pp. 39-45, 86-91.
  20. McDermott, J.F. (1969) Plastic bending of A514 steel beams. Journal of the Structural Division, ASCE, Vol. 95, No. ST9, pp. 1851-1871.
  21. Neal, B.G. (1950) The lateral instability of yielded mild steel beams of rectangular cross section, Philos. Trans. R. Soc. London, Vol. A242.
  22. Nethercot, D.A and Trahair, N.S. (1976) Inelastic lateral buckling of determinate beams. Journal of the Structural Division, ASCE, Vol. 102, No. ST4, pp. 701-717.
  23. Ojalvo, M. and Weaver, R.R. (1978) Unbraced length requirements for steel I-Beams. Journal of the Structural Division, ASCE, Vol. 104, No. ST3, pp. 479-490.
  24. Trahair, N.S. and Kitipornchai, S. (1972) Buckling of inelastic I-Beams under uniform moment. Journal of the Structural Division, ASCE, Vol. 98, No. ST11, pp. 2551-2566.
  25. Vinnakota, S. (1977) Inelastic stability of laterally unsupported beams. Computer Structures, Vol. 7, No. 3.
  26. White, D.W. (2008), Unified flexural resistance equations for stability design of Steel I-Section members: Overview. Journal of Structural Engineering, ASCE, Vol. 134, No. 9, pp. 1405-1424. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1405)