DOI QR코드

DOI QR Code

Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks

원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석

  • 안재석 (영남대학교 건설시스템공학과) ;
  • 김영욱 (영남대학교 건설시스템공학과) ;
  • 우광성 (영남대학교 건설시스템공학과)
  • Received : 2012.07.06
  • Accepted : 2012.09.03
  • Published : 2012.11.15

Abstract

In this study, behavior of unpatched and patched cylindrical shells with through-wall cracks has been estimated using numerical experiments, and patching effect of them has been investigated according to various patching parameters. To show credibility of numerical models considered, two ways such as h- and p-methods have been adopted. Also, domain integral method and virtual crack extension method have been considered to calculate energy release rates based on linear elastic fracture mechanics. For examples, the unpatched cylindrical shells with circumferential cracks under remote tension have firstly been analyzed to show the validity of finite element modeling with h-method or p-method, and then the results have been compared with literature values published. Next, the sensitive analysis of patch repaired problems in terms of thickness of patch and adhesive, shear modulus of adhesive, composite material type of patch, crack length, etc. has been carried out.

이 연구에서는 수치해석 실험을 통하여, 원주방향 관통균열을 갖는 원통형 쉘의 패치보강 전후의 거동에 대한 평가와 다양한 변수에 따른 패치보강 효과를 분석하였다. 해석 모델의 신뢰성을 높이기 위해, h-법 및 p-법에 기초한 모델링, 두 가지 방법이 동시에 고려되었다. 또한 선형탄성파괴역학 개념에 기초하여 에너지 방출률을 산정하기 위해, 등가영역적분법 및 가상균열확장법이 고려되었다. 해석 예제로서, 먼저 연구에서 수행된 h-법 및 p-법 유한요소 모델을 검증하기 위해, 패치 보강전의 인장력을 받는 관통 균열이 있는 쉘 구조물이 해석되었으며, 해석 결과값들과 여러 참고문헌 값들이 비교되었다. 그리고 패치 보강된 원통형 쉘 시스템에서의 접착제 두께, 접착제 전단탄성계수, 패치 두께, 패치 재료, 균열 길이 등의 여러 설계 변수에 대한 민감도 해석이 수행되었다.

Keywords

References

  1. 신성진, 홍종현, 신병천, 우광성(1997) 2차원 균열판에서 등가영역적분법에 의한 p-Version 유한요소모델. 대한토목학회 논문집, 대한토목학회, 제17권 제1-2호, pp. 137-147.
  2. 안재석, 우광성(2012) 복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장법을 사용한 혼합모우드해석. 대한토목학회 논문집, 대한토목학회, 제32권 제1A호, pp. 11-18.
  3. 안재석, 우광성(2012) 접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법. 대한토목학회 논문집, 대한토목학회, 제32권 제1A호, pp. 39-48.
  4. 우광성, 한상현, 양승호(2008) p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정. 대한토목학회 논문집, 대한토목학회, 제28권 제5A호, pp. 649-656.
  5. Adams, R.D., Comyn, J., and Wake, W.C. (1997) Structural adhesive joints in engineering. second ed. London: Chapman & Hall.
  6. ANSYS (2007) Version 11, ANSYS Theory Manual, ANSYS, Inc., USA.
  7. Bachir, B.B., Belhouari, M., and Serier, B.C. (2002) Computation of the stress intensity factors for patched cracks with bonded composite repairs in mode I and mixed mode. Compos. Struct., Vol. 56, pp. 401-406. https://doi.org/10.1016/S0263-8223(02)00023-5
  8. Baker, A.A. (1984) Repair of cracked or defected metallic aircraft components with advanced fibre composites-an overview of Australian work. Compos. Struct., Vol. 2, pp. 153-181. https://doi.org/10.1016/0263-8223(84)90025-4
  9. Baker, A.A. and Jones, R. (1988) Bonded repair of aircraft structures, Dordrecht: Martinus Nijhoff.
  10. Bouiadjra, B.B., Belhouari, M., and Serier, B. (2002) Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode. Compos. Struct., Vol. 56, pp. 401-406. https://doi.org/10.1016/S0263-8223(02)00023-5
  11. Chattopadhyay, J., Tomar, A.K.S., Dutta, B.K., and Kushwaha, H.S. (2005) Elastic-plastic J and COD estimation schemes for through-wall circumferentially cracked elbow under in-plane closing moment. Eng. Fract. Mech., Vol. 72, pp. 2186-2217. https://doi.org/10.1016/j.engfracmech.2005.02.001
  12. Chue, C.H., Chang, L.C., and Tsai, J.S. (1994) Bonded repair of a plate with inclined central crack under biaxial loading. Compos. Struct., Vol. 28, pp. 39-45. https://doi.org/10.1016/0263-8223(94)90004-3
  13. Doltsinis, S.T., Knapp, H., Streiner, P., and Wustenberg, H. (1985) PERMAS-FM, Fracture Mechanics, INTES GmbH, Stuttgart, User Manual, Publication No. 226, Rev. C.
  14. Hart-Smith, L.J. (1985) The design of repairable advanced composite structures, Douglas Paper 7550. McDonnell Douglas, Douglas Aircraft Company.
  15. Helen, T.K. (1975) On the method of virtural crack extensions. Int. J. Numer. Methods Eng., Vol. 9, No. 1, pp. 187-208. https://doi.org/10.1002/nme.1620090114
  16. Jones, R. and Chiu, W.K. (1999) Composite repairs to crack in metallic components. Compos. Struct., Vol. 44, pp.17-29. https://doi.org/10.1016/S0263-8223(98)00108-1
  17. Kruger, R., Koning M., and Schneider, T. (1993) Computation of Local Energy Release Rates Along Straight and Curved Delamination Fronts of Uni-directionally Laminated DCB- and ENF- Specimens, in Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC SSDM Conference, La Jolla, CA: American Institute of Aeronautics and Astronautics, Washington, pp. 1332-1342.
  18. Kumar, V. et al. (1984) Advanced in elastic-plastic fracture mechanics, NP-3607 Research Project 1237-1, General Electronic Company prepared for EPRI.
  19. Naboulsi, S. and Mall, S. (1996) Modeling of a cracked metallic structure with bonded composite patch using the three layer technique. Compos. Struct., Vol. 35, pp. 295-308. https://doi.org/10.1016/0263-8223(96)00043-8
  20. Nikishkov, G.P. and Atluri, S.N. (1987) An equivalent domain integral method for computing crack tip integral parameters in non-elastic, thermal mechanical fracture. Eng. Fract. Mech., Vol. 26, No. 6, pp. 851-867. https://doi.org/10.1016/0013-7944(87)90034-8
  21. Oh, C.K., Song, T.K., Kim, Y.J., Kim, J.S., and Jin, T.E. (2008) Elastic-plastic fracture mechanics analyses of circumferential through-wall cracks between elbows and pipes. Eng. Fract. Mech., Vol. 75, pp. 1231-1250. https://doi.org/10.1016/j.engfracmech.2007.04.003
  22. Owen, D.R.J. and Fawkes, A.J. (1983) Engineering Fracture Mechanics: Numerical Methods and Applications, Pineridge Press Ltd., Swansea, U.K.
  23. Parks, D.M. (1974) A stiffness derivative finite element technique for determination of elastic crack tip stress intensity factors. Int. J. Fract., Vol. 10, No. 4, pp. 487-502. https://doi.org/10.1007/BF00155252
  24. Rice, J.R. (1968) A path-independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech., Vol. 35, 379-386. https://doi.org/10.1115/1.3601206
  25. Rybicki, E.F. and Kanninen, M.F. (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech., Vol. 9, pp. 931-938. https://doi.org/10.1016/0013-7944(77)90013-3
  26. Sanders, J.L. and Lyell, J. (1982) Circumferential through-cracks in cylindrical shells under tension. J. Appl. Mech., Vol. 49, pp. 103-107. https://doi.org/10.1115/1.3161948
  27. Sun, C.T., Klug, J., and Arendt, C. (1996) Analysis of cracked plates repaired with bonded composite patches. AIAA J., Vol. 34, pp. 369-374. https://doi.org/10.2514/3.13073
  28. Sun, X. and Tong, L. (2004a) Curvature effect on Fracture toughness of cracked cylindrical shells bonded with composite patches. AIAA J., Vol. 42, pp. 2585-2591. https://doi.org/10.2514/1.2034
  29. Sun, X. and Tong, L. (2004b) Fracture toughness analysis of inclined crack in cylindrical shell repaired with bonded composite patch. Compos. Struct., Vol. 66, pp. 639-645. https://doi.org/10.1016/j.compstruct.2004.05.022
  30. Szabo, B. and Babuska, I. (1991) Finite element analysis. JOHN WIELY & SONS, INC.
  31. Ting, T., Jones, R., Chiu, W.K., Marshall, I.H., and Greer, J.M. (1999) Composites repairs to rib stiffened panels. Compos. Struct., Vol. 47, pp. 737-743. https://doi.org/10.1016/S0263-8223(00)00046-5
  32. Tong, L. and Steven, GP. (1999) Analysis and design of structural bonded joints. Boston: Kluwer Academic Publishers.
  33. Tong, L. and Sun, X. (2003a) Adhesive elements for stress analysis of bonded patch to curved thin-walled structures. Comput. Mech., Vol. 30, pp. 143-154. https://doi.org/10.1007/s00466-002-0374-3
  34. Tong, L. and Sun, X. (2003b) Nonlinear stress analysis for bonded patch to curved thin-walled structures. Int. J. Adhes. Adhes., Vol. 23, pp. 349-364. https://doi.org/10.1016/S0143-7496(03)00063-0
  35. Tong, L. and Sun, X. (2003c) Optimization of ply drop-offs in bonded patch to cylindrical shell structures. J. Compos. Mater., Vol. 37, pp. 1289-1314. https://doi.org/10.1177/0021998303037014005
  36. Tong, L. and Sun, X. (2003d) Shape optimization of bonded patch to cylindrical shell structures. Int. J. Num. Methods. Eng., Vol. 58, pp. 793-820. https://doi.org/10.1002/nme.802
  37. Umamaheswar, TVRS and Singh, R. (1999) Modeling of a patch repair to a thin cracked sheet. Eng. Fract. Mech., Vol. 62, pp. 267-289. https://doi.org/10.1016/S0013-7944(98)00088-5
  38. Young, A., Rooke, D.P., and Cartwright, D.J. (1992) Analysis of patched and stiffened cracked panels using the boundary element method. Int. J. Solid. Struct., Vol. 29, pp. 2201-2206. https://doi.org/10.1016/0020-7683(92)90066-3
  39. Zahoor, A. (1985) Closed form expressions for fracture mechanics analysis of cracked pipes. J. Press. Vess.-T. ASME, Vol. 107, pp. 203-205. https://doi.org/10.1115/1.3264435