DOI QR코드

DOI QR Code

Evaluation on the Sulfate Attack Resistance of Cement Mortars with Different Exposure Conditions

노출조건에 따른 시멘트 모르타르의 황산염침식 저항성 평가

  • Received : 2012.08.14
  • Accepted : 2012.09.26
  • Published : 2012.11.15

Abstract

In order to evaluate the effects of exposure conditions on the resistance to sulfate attack of normal and blended cement mortars, several mechanical characteristics of the mortars such as expansion, strength and bulk density were regularly monitored for 52 cycles under sodium sulfate attack. The mortar specimens were exposed to 3 different types of exposure conditions; 1) continuous full immersion(Exposure A), continuous half-immersion(Exposure B) and cyclic wetting-drying(Exposure C). Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens subjected to Exposure B, showing the wide cracks in the portions where attacking solution is adjacent to air. Additionally, the beneficial effect of ground granulated blast-furnace slag and silica fume was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability and densified structure. Thus, it is suggested that when concrete made with normal cement is exposed to sulfate environment, proper considerations on the exposure conditions should be taken.

본 연구는 보통 및 혼합시멘트계 모르타르의 황산염침식 저항성에 대한 노출조건의 영향을 평가하기 위하여 수행되었다. 모르타르를 제조한 후, 3종류 노출조건, 즉 1) 연속 완전침지, 2) 연속 반침지 및 3) 건습반복 조건에서 모르타르의 팽창, 강도, 밀도 등 역학적 성능변화를 52싸이클까지 주기적으로 관찰하였다. 실험결과에 따르면, 연속 반침지(Exposure B) 조건에 노출된 OPC 모르타르가 황산염침식에 의한 다량의 균열이 발생하므로써, 연속 완전침지 조건 및 건습반복 조건에 노출된 모르타르에 비하여 성능저하가 상대적으로 크게 나타났다. 그러나, 고로슬래그미분말 및 실리카퓸을 사용한 혼합시멘트계 모르타르는 낮은 투수성 및 조직구조의 밀실화효과에 의하여 노출조건에 관계없이 우수한 황산염침식 저항성을 보였다. 따라서, 콘크리트 구조물이 황산염침식 환경에 노출될 경우, 노출조건에 대한 고려가 반드시 이루어져야 할 것으로 판단된다.

Keywords

References

  1. 콘크리트표준시방서(2009) 한국콘크리트학회.
  2. ACI Building Code, 318 (2008) American Concrete Institute.
  3. Akoz, F., Turker, F., Koral, S., and Yuzer, N. (1999) Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume. Cement and Concrete Research, Vol. 29, No. 4, pp. 537-544. https://doi.org/10.1016/S0008-8846(98)00251-8
  4. Al-Amoudi, O.S.B. (2002) Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites, Vol. 24, No. 3, pp. 305-316. https://doi.org/10.1016/S0958-9465(01)00082-8
  5. Al-Amoudi, O.S.B., Maslehuddin, M., and Saadi, M.M. (1995) Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements. ACI Materials Journal, Vol. 92, No. 1, pp. 15-24.
  6. Al-Dulaijan, S.U., Maslehuddin, M., Al-Zahrani, M.M., Sharif, A.M. Shameem, M., and Ibrahim, M. (2003) Sulfate resisting of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites, Vol. 25, No. 4, pp. 429-437. https://doi.org/10.1016/S0958-9465(02)00083-5
  7. Aye, T. and Oguchi, C. T. (2011) Resistance of plain and blended cement mortars exposed to severe sulfate attacks. Construction and Building Materials, Vol. 25, No. 6, pp. 2988-2996. https://doi.org/10.1016/j.conbuildmat.2010.11.106
  8. British Standard BS 5328 (1997) Part I. Specifying Concrete.
  9. Bureau of Reclamation Concrete Manual (1985) 8th Edition, U.S. Government Printing Office, Washington, D.C.
  10. Canadian Standard A23.1 (1994)
  11. Flatt, R. (2002) Salt damage in porous materials. Journal of Crystal Growth, Vol. 242, No. 3, pp. 435-454. https://doi.org/10.1016/S0022-0248(02)01429-X
  12. Girardi, F., Vaona, W., and Maggio, R.D. (2010) Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cement and Concrete Composites, Vol. 32, No. 8, pp. 595-602. https://doi.org/10.1016/j.cemconcomp.2010.07.002
  13. Hartshorn, S.A., Sharp, J.H., and Swamy, R.N. (1999) Thaumasite formation in Portland-limestone cement pastes. Cement and Concrete Research, Vol. 29, No. 8, pp. 1331-1340. https://doi.org/10.1016/S0008-8846(99)00100-3
  14. Hekal, E.E., Kishar, E., and Mostafa, H. (2002) Magnesium sulfate attack on hardened cement pastes under different circumstances. Cement and Concrete Research, Vol. 32, No. 9, pp. 1421-1427. https://doi.org/10.1016/S0008-8846(02)00801-3
  15. Hime, W.G. and Mather, B. (1999) Sulfate attack, or is it ?. Cement and Concrete Research, Vol. 29, No. 5, pp. 789-791. https://doi.org/10.1016/S0008-8846(99)00068-X
  16. Mangat, P.S. and Khatib, J.M. (1995) Influence of fly ash, silica fume, and slag on sulfate resistance of concrete. ACI Materials Journal, Vol. 95, No. 5, pp. 542-552.
  17. Mehta, P.K. (1992) Material Science of Concrete, Jan Skalny, Ed., American Ceramic Society, pp. 102-130.
  18. Moon, H.Y. and Lee, S.T. (2003) Influence of silicate ratio and additives on the sulphate resistance of Portland cement. Advances in Cement Research, Vol. 15, No. 3, pp. 91-101. https://doi.org/10.1680/adcr.2003.15.3.91
  19. Moon, H.Y., Lee, S.T., and Kim, S.S. (2003) Sulphate resistance of silica fume blended mortars exposed to various sulphate solutions. Canadian Journal of Civil Engineering, Vol. 30, No. 4, pp. 625-636. https://doi.org/10.1139/l03-024
  20. Osborne, G.J. (1999) Durability of Portland blast-furnace slag cement concrete. Cement and Concrete Composites, Vol. 21, No. 1, pp. 11-21. https://doi.org/10.1016/S0958-9465(98)00032-8
  21. Rasheeduzzafar, Al-Amoudi, O.S.B., Abdulfauwad, S., and Maslehuddin, M. (1994) Magnesium-sodium sulfate attack in plain and blended cements. ASCE, Journal of Materials in Civil Engineering, Vol. 6, No. 2, pp. 201-222. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(201)
  22. Sahmaran, M., Erdem, T.K., and Yaman, I.O. (2007) Sulfate resistance of plain and blended cements exposed to wetting-drying and heating- cooling environments. Construction and Building Materials, Vol. 21, No. 8, pp. 1771-1778. https://doi.org/10.1016/j.conbuildmat.2006.05.012
  23. Santhanam, M., Cohen, M.D., and Olek, J. (2001) Sulfate attack research - whither now?. Cement and Concrete Research, Vol. 31, No. 6, pp. 845-851. https://doi.org/10.1016/S0008-8846(01)00510-5
  24. Wee, T.H., Suryavanshi, A.K., Wong, S.F., and Rahman, A.K.M. (2000) Sulfate resistance of concrete containing mineral admixtures. ACI Materials Journal, Vol. 97, No. 5, pp. 536-549.