The Effect of Porcine Cancellous Bone for Bone Regeneration and Application of Platelet-rich Fibrin in Rabbit Calvarial Defect

가토 두개골 결손부에 이식된 저골(猪骨)과 혈소판 풍부 섬유소의 골형성 효과

  • Park, Jeong Ik (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Jeon, Seong Bae (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Song, Young Il (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Do, Hyung Sik (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Lee, Jin Yong (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Jang, Hyun Seok (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Kwon, Jong Jin (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Rim, Jae Suk (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine) ;
  • Lee, Eui Seok (Department of Oral and Maxillofacial Surgery, Korea University College of Medicine)
  • 박정익 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 전성배 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 송영일 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 도형식 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 이진용 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 장현석 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 권종진 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 임재석 (고려대학교 의과대학 구강악안면외과학교실) ;
  • 이의석 (고려대학교 의과대학 구강악안면외과학교실)
  • Received : 2012.10.17
  • Accepted : 2012.11.27
  • Published : 2012.11.30

Abstract

Purpose: The purpose of this study was to evaluate the effectiveness of the platelet-rich fibrin (PRF) used in combination with the porcine cancellous bone as a scaffold, in promoting bone regeneration in the bone defects ofthe rabbit calvaria. Methods: Ten rabbits were used in the study. Three round-shaped defects (diameter 8.0 mm) were created in the rabbit calvaria and were filled with nothing (control group), porcine cancellousbone (Experimental Group 1, porcine bone) and PRF-mixed porcine cancellous bone (Experimental Group 2). TS-GBB is a xenogenic bone-substitute product comprised of a high heat-treated mineralized porcine cancellous bone. Animals were sacrificed at 6 weeks and 12 weeks for the histological and radiographic evaluations. Results: In the micro computed tomography and histological results, the experimental groups 1 and 2 showed more bone formation, remodeling, and calcification than the control group. The new bone formation ratio showed theGroup 2 to be larger than Group 1 at6 and 12 weeks. However, there was no significant difference between the experimental groups 1 and 2 in the new bone formation area, at the 6 and 12 weeks (P>0.05). Conclusion: The PRF-mixed group showed more bone formation than the porcine cancellousbonegroup (TS-GBB), butthere was a no significant difference. The PRF may not lead to enhanced bone healing when grafted with the porcine cancellous bone.

Keywords

References

  1. Dohan Ehrenfest DM, de Peppo GM, Doglioli P, Sammartino G. Slow release of growth factors and thrombospondin-1 in Choukroun's platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors 2009;27:63-9. https://doi.org/10.1080/08977190802636713
  2. Choukroun J, Adda F, Schoeffler C, et al., PRF: an opportunity in perio-implantology. Implantodontie 2000;42:55-62.
  3. Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet- related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e45-50. https://doi.org/10.1016/j.tripleo.2005.07.009
  4. Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e51-5. https://doi.org/10.1016/j.tripleo.2005.07.010
  5. Chang YC, Wu KC, Zhao JH. Clinical application of platelet- rich fibrin as the sole grafting material in periodontal intrabony defects. J Dent Sci 2011;6:181-8. https://doi.org/10.1016/j.jds.2011.05.010
  6. An HS, Lynch K, Toth J. Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 1995;8:131-5.
  7. Kim SH, Shin JW, Park SA, et al. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J Biomed Mater Res B Appl Biomater 2004;68:69-74.
  8. Wlodarski PK, Haberko K, Haberko M, Pyda A, Wlodarski KH. Implantation of natural hydroxyapatite from porcine bone into soft tissues in mice. Folia Biol (Krakow) 2005;53:183-7. https://doi.org/10.3409/173491605775142747
  9. Nannmark U, Sennerby L. The bone tissue responses to prehydrated and collagenated cortico-cancellous porcine bone grafts: a study in rabbit maxillary defects. Clin Implant Dent Relat Res 2008;10:264-70.
  10. Orsini G, Scarano A, Piattelli M, Piccirilli M, Caputi S, Piattelli A. Histologic and ultrastructural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone-derived biomaterial. J Periodontol 2006;77:1984-90. https://doi.org/10.1902/jop.2006.060181
  11. Barone A, Ricci M, Covani U, Nannmark U, Azarmehr I, Calvo-Guirado JL. Maxillary sinus augmentation using prehydrated corticocancellous porcine bone: hystomorphometric evaluation after 6 months. Clin Implant Dent Relat Res 2012;14:373-9. https://doi.org/10.1111/j.1708-8208.2010.00274.x
  12. Pagliani L, Andersson P, Lanza M, et al. A collagenated porcine bone substitute for augmentation at neoss implant sites: a prospective 1-year multicenter case series study with histology. Clin Implant Dent Relat Res 2012;14:746-58. https://doi.org/10.1111/j.1708-8208.2010.00314.x
  13. Barone A, Crespi R, Aldini NN, Fini M, Giardino R, Covani U. Maxillary sinus augmentation: histologic and histomorphometric analysis. Int J Oral Maxillofac Implants 2005; 20:519-25.
  14. Yoo KH, Kim SE, Shim KM, Park HJ, Choi SH, Kang SS. Effect of porcine cancellous bones on regeneration in rats with calvarial defect. J Life Sci 2010;20:1207-13. https://doi.org/10.5352/JLS.2010.20.8.1207
  15. Skoglund A, Hising P, Young C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants 1997;12:194-9.
  16. Hallman M, Lundgren S, Sennerby L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clin Implant Dent Relat Res 2001;3:87-96. https://doi.org/10.1111/j.1708-8208.2001.tb00236.x
  17. Kim SG, Kim JY, Choi JY. The route from mission impossible to Columbus's egg: an easy means of platelet-rich-fibrin (PRF) production in the rabbit. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:416-8. https://doi.org/10.1016/j.tripleo.2010.05.058
  18. Lee JW, Kim SG, Kim JY, et al. Restoration of a peri-implant defect by platelet-rich fibrin. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:459-63. https://doi.org/10.1016/j.tripleo.2011.03.043
  19. Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e37-44. https://doi.org/10.1016/j.tripleo.2005.07.008
  20. Dohan DM, Choukroun J. PRP, cPRP, PRF, PRG, PRGF, FC. How to find your way in the jungle of platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 2007;103:305-6. https://doi.org/10.1016/j.tripleo.2006.10.009
  21. Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:56-61. https://doi.org/10.1016/j.tripleo.2009.02.004
  22. Burnouf T, Tseng YH, Kuo YP, Su CY. Solvent/detergent treatment of platelet concentrates enhances the release of growth factors. Transfusion 2008;48:1090-8. https://doi.org/10.1111/j.1537-2995.2008.01691.x
  23. Choukroun J, Diss A, Simonpieri A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:299-303. https://doi.org/10.1016/j.tripleo.2005.07.012
  24. Diss A, Dohan DM, Mouhyi J, Mahler P. Osteotome sinus floor elevation using Choukroun's platelet-rich fibrin as grafting material: a 1-year prospective pilot study with microthreaded implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:572-9. https://doi.org/10.1016/j.tripleo.2007.08.021
  25. Zhang Y, Tangl S, Huber CD, Lin Y, Qiu L, Rausch-Fan X. Effects of Choukroun's platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation: a histological and histomorphometric study. J Craniomaxillofac Surg 2012;40:321-8. https://doi.org/10.1016/j.jcms.2011.04.020
  26. Kim BJ, Kwon TK, Baek HS, et al. A comparative study of the effectiveness of sinus bone grafting with recombinant human bone morphogenetic protein 2-coated tricalcium phosphate and platelet-rich fibrin-mixed tricalcium phosphate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011. [Epub ahead of print]
  27. Song JY, Kweon H, Kwon KJ, Park YW, Kim SG. The bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) in the calvaria defect of rabbit. J Korean Assoc Oral Maxillofac Surg 2010;36:250-4. https://doi.org/10.5125/jkaoms.2010.36.4.250
  28. Gurbuzer B, Pikdoken L, Tunali M, Urhan M, Kucukodaci Z, Ercan F. Scintigraphic evaluation of osteoblastic activity in extraction sockets treated with platelet-rich fibrin. J Oral Maxillofac Surg 2010;68:980-9. https://doi.org/10.1016/j.joms.2009.09.092
  29. Pfeilschifter J, Oechsner M, Naumann A, Gronwald RG, Minne HW, Ziegler R. Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin- like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology 1990;127:69-75.
  30. Giannobile WV, Whitson SW, Lynch SE. Non-coordinate control of bone formation displayed by growth factor combinations with IGF-I. J Dent Res 1997;76:1569-78. https://doi.org/10.1177/00220345970760090901
  31. Busenlechner D, Tangl S, Fitzl C, Bernhart T, Gruber R, Watzek G. Paste-like inorganic bone matrix: preclinical testing of a prototype preparation in the porcine calvaria. Clin Oral Implants Res 2009;20:1099-104. https://doi.org/10.1111/j.1600-0501.2009.01743.x