DOI QR코드

DOI QR Code

Microcosm Studies of Nanomaterials in Water and Soil Ecosystems

수생태 및 토양생태계에서 나노물질의 마이크로코즘 연구

  • Yoon, Sung-Ji (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • Received : 2012.03.19
  • Accepted : 2012.04.26
  • Published : 2012.04.30

Abstract

The current growth of nano-industries has resulted in released nanoparticles entering into water and soil ecosystems via various direct or indirect routes. Physicochemical properties of nanoparticles differ from bulk materials, and nanomaterials influence the fates of nanoparticles and the interactions of living or non-living things in the environment. Microcosm analysis is a research methodology for revealing natural phenomena by mimicking part of an ecosystem under controlled conditions. Microcosm study allows for the integrated analysis of toxic effects and fates of nanoparticles in the ecosystem. Ecotoxicity studies of nanomaterials are steadily increasing, and microcosm studies of nanomaterials are currently beginning to surface. In this study, microcosm studies of nanomaterials in water and soil ecosystems were extensively investigated based on SCI(E) papers. We found that the microcosm studies have been reported in 12 instances, and mesocosm studies have been reported in only once until now. Advanced research was mostly evaluated at the microorganism level. But integrated analysis of nanotoxicity is required to research the interactions based of various species. Thus, our studies analysed the trend of microcosm studies on nanomaterials in water and soil ecosystems and suggested future directions of microcosm research of nanomaterials.

나노산업의 발달로 인해 나노제품의 제조, 소비, 폐기 과정에서 나노물질이 직 간접적인 경로를 통해 수생태 및 토양생태계로 유입되고 있다. 나노물질은 벌크물질과는 다른 특성을 가지고 있으며 나노물질의 다양한 물리화학적 변화는 환경내 나노물질의 거동 및 무생물적 생물적 상호작용에 영향을 미친다. 나노물질의 생태 독성 연구는 꾸준하게 증가하는 추세이며 특히 나노물질의 마이크로코즘 연구가 최근 보고되고 있다. 마이크로코즘(Microcosm)은 통제된 실험 조건 하에서 생태계의 일부분을 모사하여 자연 현상을 연구하기 위한 기법으로서, 마이크로코즘 연구는 생태계 내 나노물질의 거동과 통합적인 독성영향 평가를 가능하게 한다. 본 연구는 수생태 및 토양생태계에서 나노물질을 이용한 마이크로코즘 및 메조코즘(Mesocosm) 선행연구를 국제 학술 논문을 중심으로 조사하였다. 현재까지 마이크로코즘 연구는 총 12건의 논문이 발표되었고 단 1건의 메조코즘 연구가 보고되었는데, 대부분의 연구들이 미생물 군집 수준에서 나노물질의 영향을 제한적으로 평가하였다. 나노물질의 통합적 독성 영향을 평가하기 위해서 좀 더 다양한 생물종을 대상으로 그들의 상호작용을 연구할 필요가 있다. 본 연구에서는 수생태 및 토양생태계에서 나노물질의 마이크로코즘 연구동향을 분석하고 중금속, 유기물질과 같은 일반 화학물질 이용한 마이크로코즘 독성 연구를 바탕으로 향후 나노물질의 마이크로코즘 연구방향을 제시하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Sci., 311, 622-627(2006). https://doi.org/10.1126/science.1114397
  2. Nowack, B. and Bucheli, T. D., "Occurrence, behavior and effects of nanoparticles in the environment," Environ. Pollut., 150(1), 5-22(2007). https://doi.org/10.1016/j.envpol.2007.06.006
  3. Woo-Mi Lee, Shin Woong Kim, Jin Il Kwak, Sun-Hwa Nam, Yu-Jin Shin and Youn-Joo An, "Research Trends of Ecotoxicity of Nanoparticles in Soil Environment," Official J. of Kor. Soc. Toxicol., 26(4), 253-259(2010).
  4. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H. and Sigg, L., "Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi," Ecotoxicol., 17(5), 372-386(2008). https://doi.org/10.1007/s10646-008-0214-0
  5. Moore, M., "Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?," Environ. International, 32(8), 967-976(2006). https://doi.org/10.1016/j.envint.2006.06.014
  6. Woo-Mi Lee and Youn-Joo An, "Research trends of ecotoxicity of nanoparticles in water environment," J. of Kor. Soc. on Water Qual., 26(4), 566-573(2010).
  7. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M., "Understanding biophysicochemical interactions at the nano-bio interface.," Nature Mater., 8(7), 543-557(2009). https://doi.org/10.1038/nmat2442
  8. Shah, V. and Belozerova, I., "Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds," Water, Air, Soil Pollut., 197(1), 143-148(2009). https://doi.org/10.1007/s11270-008-9797-6
  9. Pritchard, P. and Bourquin, A., "The use of microcosms for evaluation of interactions between pollutants and microorganisms," Adv. Microbiol. Ecol., 7, 133-172(1984). https://doi.org/10.1007/978-1-4684-8989-7_4
  10. Kampichler, C., Bruckner, A., Baumgarten, A., Berthold, A. and Zechmeister-Boltenstern, S., "Field mesocosms for assessing biotic processes in soils: How to avoid side effects," European, J. Soil Biol., 35(3), 135-143(1999). https://doi.org/10.1016/S1164-5563(00)00113-8
  11. Bruckner, A., Wright, J., Kampichler, C., Bauer, R. and Kandeler, E., "A method of preparing mesocosms for assessing complex biotic processes in soils," Biol. Fertility of Soils, 19(2), 257-262(1995). https://doi.org/10.1007/BF00336169
  12. Woo-Mi Lee and Youn-Joo An, "Research Trend of Trophic Transfer of Nanoparticles in Aquatic Ecosystems," Kor. J. Limnol., 44(4), 317-326(2011)
  13. Ferry, J. L., Craig, P., Hexel, C., Sisco, P., Frey, R., Pennington, P. L., Fulton, M. H., Scott, I. G., Decho, A. W., Kashiwada, S., Murphy, C. J. and Shaw, T. J., "Transfer of gold nanoparticles from the water column to the estuarine food web," Nature Nanotechnol., 4, 441-444(2009). https://doi.org/10.1038/nnano.2009.157
  14. Beyers, R. J., "The microcosm approach to ecosystem biology," Am. Biol. Teacher, 26(7), 491-498(1964). https://doi.org/10.2307/4440732
  15. Hoang, T. C., Pryor, R. L., Rand, G. M. and Frakes, R. A., "Bioaccumulation and toxicity of copper in outdoor freshwater microcosms," Ecotoxicol. Environ. Saf., 70, 1011-1020(2011).
  16. Barry, M. J. and Logan, D. C., "The use of temporary pond microcosms for aquatic toxicity testing: direct and indirect effects of endosulfan on community structure," Aquat. Toxicol., 41(1-2), 101-124(1998). https://doi.org/10.1016/S0166-445X(97)00063-5
  17. Baxter, L. R., Moore, D. L., Sibley, P. K., Solomon, K. R. and Hanson, M. L., "Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations," Environ. Toxicol. Chem., 30(7), 1689-1696(2011). https://doi.org/10.1002/etc.552
  18. Burrows, L. A. and Edwards, C. A., "The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems," Eur. J. Soil Biol., 38, 245-249(2002). https://doi.org/10.1016/S1164-5563(02)01153-6
  19. Bogomolov, D., Chen, S. K., Parmelee, R., Subler, S. and Edwards, C., "An ecosystem approach to soil toxicity testing: a study of copper contamination in laboratory soil microcosms," Appl. Soil Ecol., 4(2), 95-105(1996). https://doi.org/10.1016/0929-1393(96)00112-6
  20. Salminen, J. and Haimi, J., "Effects of pentachlorophenol in forest soil: a microcosm experiment for testing ecosystem responses to anthropogenic stress," Biol. Fertility of Soils, 23(2), 182-188(1996). https://doi.org/10.1007/BF00336061
  21. Pradhan, A., Seena, S., Pascoal, C. and Cassio, F., "Can Metal Nanoparticles Be a Threat to Microbial Decomposers of Plant Litter in Streams?," Microb. Ecol., 62, 58-68(2011). https://doi.org/10.1007/s00248-011-9861-4
  22. Barnes, R. J., van der Gast, C. J., Riba, O., Lehtovirta, L. E., Prosser, J. I., Dobson, P. J. and Thompson, I. P., "The impact of zero-valent iron nanoparticles on a river water bacterial community," J. Hazard. Mater., 184, 73-80(2010). https://doi.org/10.1016/j.jhazmat.2010.08.006
  23. Battin, T. J., Kammer, F., Weilhartner, A., Ottofuelling, S. and Hofmann, T., "Nanostructured $TiO_2$: transport behavior and effects on aquatic microbial communities under environmental conditions," Environ. Sci. Technol., 43(21), 8098-8104(2009). https://doi.org/10.1021/es9017046
  24. Bradford, A., Handy, R. D., Readman, J. W., Atfield, A. and Muhling, M., "Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments," Environ. Sci. Technol., 43(12), 4530-4536(2009). https://doi.org/10.1021/es9001949
  25. Muhling, M., Bradford, A., Readman, J. W., Somerfield, P. J. and Handy, R. D., "An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment," Mar. Environ. Res., 68(5), 278-283(2009). https://doi.org/10.1016/j.marenvres.2009.07.001
  26. Kumar, N., Shah, V. and Walker, V. K., "Influence of a nanoparticle mixture on an arctic soil community," Environ. Toxicol. Chem., 31(1), 131-135(2012). https://doi.org/10.1002/etc.721
  27. Ge, Y., Schimel, J. P. and Holden, P. A., "Evidence for Negative Effects of $TiO_2$ and ZnO Nanoparticles on Soil Bacterial Communities," Environ. Sci. Technol., 45, 1659-1664(2011). https://doi.org/10.1021/es103040t
  28. He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N. and Lin, X., "The impact of iron oxide magnetic nanoparticles on the soil bacterial community," J. Soils and Sediments, 11, 1408-1417(2011). https://doi.org/10.1007/s11368-011-0415-7
  29. Kumar, N., Shah, V. and Walker, V. K., "Perturbation of an arctic soil microbial community by metal nanoparticles," J. Hazard. Mater., 190, 816-822(2011). https://doi.org/10.1016/j.jhazmat.2011.04.005
  30. Sunghyun Kim, Miae Jung and In-sook Lee, "Size-dependent toxicity of metal oxide particles on the soil microbial community and growth of Zea Mays," J. KSEE, 31(12), 1069-1074(2009).
  31. Nyberg, L., Turco, R. F. and Nies, L., "Assessing the impact of nanomaterials on anaerobic microbial communities," Environ. Sci. Technol., 42(6), 1938-1943(2008). https://doi.org/10.1021/es072018g
  32. Norum, U., Friberg, N., Jensen, M. R., Pedersen, J. M. and Bjerregaard, P., "Behavioural changes in three species of freshwater macroinvertebrates exposed to the pyrethroid lambdacyhalothrin: Laboratory and stream microcosm studies," Aquat. Toxicol., 98(4), 328-335(2010). https://doi.org/10.1016/j.aquatox.2010.03.004
  33. Benbow, M. E. and Merritt, R. W., "Road-salt toxicity of select Michigan wetland macroinvertebrates under different testing conditions," Wetlands, 24(1), 68-76(2004). https://doi.org/10.1672/0277-5212(2004)024[0068:RTOSMW]2.0.CO;2
  34. Berenzen, N., Schulz, R. and Liess, M., "Effects of chronic ammonium and nitrite contamination on the macroinvertebrate community in running water microcosms," Water Res., 35(14), 3478-3482(2001). https://doi.org/10.1016/S0043-1354(01)00055-0
  35. Vervliet-Scheebaum, M., Straus, A., Tremp, H., Hamer, M., Maund, S. J., Wagner, E. and Schulz, R., "A microcosm system to evaluate the toxicity of the triazine herbicide simazine on aquatic macrophytes," Environ. Pollut., 158(2), 615-623(2010). https://doi.org/10.1016/j.envpol.2009.08.005
  36. Faupel, M., Ristau, K. and Traunspurger, W., "The functional response of a freshwater benthic community to cadmium pollution," Environ. Pollut., 162, 104-109(2012). https://doi.org/10.1016/j.envpol.2011.11.004
  37. Niederlehner, B., Pontasch, K. W., Pratt, J. R. and Cairns, J., "Field evaluation of predictions of environmental effects from a multispecies-microcosm toxicity test," Arch. Environ. Contam. Toxicol., 19(1), 62-71(1990). https://doi.org/10.1007/BF01059813
  38. Brinke, M., Ristau, K., Bergtold, M., Hoss, S., Claus, E., Heininger, P. and Traunspurger, W., "Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium," Environ. Toxicol. Chem., 30(2), 427-438(2011). https://doi.org/10.1002/etc.387
  39. Lev, S. M., Matthies, N., Snodgrass, J. W., Casey, R. E. and Ownby, D. R., "Effects of Zinc Exposure on Earthworms, Lumbricus terrestris, in an Artificial Soil," Bull. Environ. Contam. Toxicol., 84(6), 687-691(2010). https://doi.org/10.1007/s00128-010-0002-4
  40. An, Y. J., "Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds," Environ. Pollut., 134(2), 181-186(2005). https://doi.org/10.1016/j.envpol.2004.08.012
  41. Chen, S. K., Edwards, C. A. and Subler, S., "A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth," Appl. Soil Ecol., 18(1), 69-82(2001). https://doi.org/10.1016/S0929-1393(01)00135-4
  42. Santos, M. J. G., Ferreira, V., Soares, A. M. V. M. and Loureiro, S., "Evaluation of the combined effects of dimethoate and spirodiclofen on plants and earthworms in a designed microcosm experiment," Appl. Soil Ecol., 48, 294-300(2011). https://doi.org/10.1016/j.apsoil.2011.04.009
  43. Dodd, M. and Addison, J. A., "Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta and Onychiurus folsomi) and lettuce (Lactuca sativa)," Environ. Toxicol. Chem., 29(2), 338-346(2010). https://doi.org/10.1002/etc.28
  44. Scheifler, R., de Vaufleury, A., Coeurdassier, M., Crini, N. and Badot, P. M., "Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: A microcosm study," Environ. Toxicol. Chem., 25(3), 815-822(2006). https://doi.org/10.1897/04-675R.1
  45. Martikainen, E., Haimi, J. and Ahtiainen, J., "Effects of dimethoate and benomyl on soil organisms and soil processes-a microcosm study" Appl. Soil Ecol., 9, 381-387(1998). https://doi.org/10.1016/S0929-1393(98)00093-6