DOI QR코드

DOI QR Code

Greenhouse Gas Reduction Scenario from LEAP Model Application to a University Campus-For Hanyang University Ansan Campus

LEAP 모델 적용을 통한 대학단위 온실가스 감축안 도출 - 한양대학교 안산캠퍼스 대상으로

  • Park, Hyo-Jeong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jung, Hye-Jin (Asian Institute for Energy, Environment and Sustainability, Seoul National University) ;
  • Yi, Seung-Muk (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Park, Jae-Woo (Department of Civil and Environmental Engineering, Hanyang University)
  • 박효정 (한양대학교 건설환경공학과) ;
  • 정혜진 (서울대학교 아시아에너지환경지속가능발전연구소) ;
  • 이승묵 (서울대학교 보건대학원 환경보건학과) ;
  • 박재우 (한양대학교 건설환경공학과)
  • Received : 2012.11.03
  • Accepted : 2012.04.26
  • Published : 2012.04.30

Abstract

The sources of greenhouse gases (GHG) at Hanyang University Ansan campus, including direct sources, indirect sources, and others, were investigated in order to establish the GHG inventory. Emission of GHG was calculated with the energy use from each source from 2007 and 2009. The indirect emission (56.7%) due to the electricity significantly contributed to total GHG emission. The scenario for the GHG reduction was designed for both campus administration and members. The reduction potential of GHG was simulated from 2007 to 2020 using Long-range Energy Alternatives Planning (LEAP) model. In case of GHG reduction scenario by campus administration, the GHG can be reduced by 63.34 ton $CO_{2eq}/yr$ for stationary combustion in the direct source, by 221.1 ton $CO_{2eq}/yr$ for mobile combustion in the direct source, and by 4,637.34 ton $CO_{2eq}/yr$ for lighting in the indirect source, compared to 2020 Business As Usual (BAU). In case of GHG reduction action scenario by campus members, the reduction potential of GHG was 1293.76 ton $CO_{2eq}/yr$. Overall, the total GHG emissions in 2020 by the both scenarios can be decreased by 24% compared to 2020 BAU.

본 연구에서는 대학 캠퍼스 단위에서의 온실가스 인벤토리 구축을 위해 한양대학교 안산캠퍼스를 대상으로 직접 배출원(도시가스, 실내등유, 이동연소), 간접 배출원(전력), 기타 배출원(항공, 수도) 세 부분으로 온실가스 배출원을 규명하였으며, 2007년부터 2009년까지 온실가스 배출원별 에너지 사용량에 따른 온실가스 배출량을 산정하였다. 그 결과, 전체 온실가스 배출영역 중 가장 많은 부분을 차지하는 것은 간접배출의 전력부문으로 전체 온실가스 배출량의 56.7% 차지하는 것을 확인하였다. 또한, 대학본부에서 수행 가능한 온실가스 감축시나리오 및 학교구성원이 수행 가능한 온실가스 감축 실천시나리오를 대학환경에 적합하게 설계한 후 LEAP 모델을 이용하여 2007년부터 2020년까지의 온실가스 감축잠재량을 평가하였다. 그 결과, 감축시나리오 적용시 2020년 BAU(배출전망치) 대비 2020년에는 직접배출 중 고정연소에서 63.34 ton $CO_{2eq}/yr$, 이동연소에서 221.1 ton $CO_{2eq}/yr$ 감축되었으며, 간접배출 중 조명에서는 4,637.34 ton $CO_{2eq}/yr$ 온실가스가 감축되는 것으로 산출되었다. 또한, 실천시나리오를 통한 온실가스 감축잠재량은 1293.76 ton $CO_{2eq}/yr$으로 산출되었다. 따라서, 한양대학교 안산 캠퍼스에 감축 실천 시나리오를 모두 적용한다면 2020년에는 2020년 BAU 대비 온실가스를 총 24% 감축할 수 있을 것으로 추정된다.

Keywords

References

  1. Intergovernmental Panel on Climate Change, "Climate change 2007,"(2007).
  2. 환경부, "국내온실가스 배출현황,"(2011).
  3. 녹색연합, "대학의 에너지 절감 대책 시급하다 보도자료," (2011).
  4. 에너지관리공단, "2011 에너지절약 통계 핸드북,"(2011).
  5. 정나라, 이사라, 정효진, 김태국, 이승묵, "대학단위의 온실 가스 인벤토리 구축 가이드라인 개발," 한국대기환경학회 춘계학술대회, 한국대기환경학회, 인천, pp. 306-307(2010).
  6. 이승묵, 박재우, 최경식, 김득수, 한영지, 정혜진, 김태국, 이종환, 김우주, 김세진, 우정호, 배철갑, 이은정, 양지혜, 박상영, 이송미, 나운성, 박효정, 장준원, 여인환, 남역현, 윤동민, "2011년 대학단위 온실가스 감축모델 개발 보고서," 환경부(2011).
  7. Heaps, C., "An Introduction to LEAP," Stockholm Environmnet Institute(2008).
  8. Shin, H. C., Park, J. W., Kin, H. S. and Shin, E. S., "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, 33(10), 1261-1270(2005). https://doi.org/10.1016/j.enpol.2003.12.002
  9. Lee, S. M., Park, J. W., Song, H. J., Maken, S. and Filburn, T., "Implication of $CO_2$ capture technologies options in electricity generation in Korea," Energy Policy, 36(1), 326-334(2008). https://doi.org/10.1016/j.enpol.2007.09.018
  10. Huang, W. M., "GHG legislation: Lessons from Taiwan," Energy Policy, 37(7), 2696-2707(2009). https://doi.org/10.1016/j.enpol.2009.03.007
  11. Wenjia C., Can W., Jining C., Ke W., Ying Z. and Xuedu L., "Comparison of $CO_2$ emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, 36(3), 1181-1194(2008). https://doi.org/10.1016/j.enpol.2007.11.030
  12. Bollen, J., van der Zwan, B., Brink C. and Eerens. H., "Local air pollution and global climate change: a combined costbenefit analysis," Res. and Energy Economics, 31(3), 161-181(2009). https://doi.org/10.1016/j.reseneeco.2009.03.001
  13. Song, H. J., Lee, S. M., Maken, S., Ahn, S. W., Park, J. W., Min, B. and Koh, W., "Environmetal and economic assessment of the chemical absorption process in Korea using the LEAP model," Energy Policy, 35(10), 5109-5116(2007). https://doi.org/10.1016/j.enpol.2007.05.004
  14. Zhang, Q. Y., Tian, W. L., Wei, Y. M. and Chen, Y. X., "External costs from electricity generation of China up to 2030 in energy and abatement scenarios," Energy Policy, 35(8), 429-4304(2007).
  15. 김호석, "LEAP 모델링 시스템을 이용한 상향 모형 구축 및 에너지 부문 기후정책 평가," 한국에너지기후변화학회 춘계학술대회, 한국에너지기후변화학회, 서울, pp. 49-58(2007).
  16. 정종흠, 조인형, 이희관, "인천대학교의 캠퍼스 이전에 따른 온실가스 배출 특성 분석," 한국대기환경학회 추계학술대회, 한국대기환경학회, 광주, p. 459(2010).
  17. 정나라, 이사라, 정효진, 김태국, 이승묵, "대학단위의 온실 가스 인벤토리 구축 가이드라인 개발," 한국대기환경학회 춘계학술대회, 한국대기환경학회, 인천, pp. 306-307(2010).
  18. 김태국, 이사라, 정나라, 이승묵, "해외대학 온실가스 인벤토리 구축방법 사례조사 및 국내 적용방안 고찰," 한국대기환경학회 춘계학술대회, 한국대기환경학회, 인천, pp. 681-682(2010).
  19. 정나라, 정효진, 김태국, 이승묵, "대학단위의 온실가스 인벤토리 구축 및 감축안 제시," 한국대기환경학회 추계학술대회, 한국대기환경학회, 광주, p. 460(2010).
  20. 장남정, "지자체 온실가스 인벤토리 구축연구-전라북도 사례," 대한환경공학회지, 31(7), 565-572(2009).
  21. Intergovernmental Panel on Climate Change, "2006 Intergovernmental Panel on Climate Change Guideline for national greenhouse gas inventories,"(2006).
  22. 신호철, 박진원, 안재근, 장석홍, 김호석, 신의순, "LEAP 모형을 이용한 매립가스 이용기술의 환경 경제적 평가," 한국 폐기물학회 추계학술연구회 발표논문집, 한국폐기물학회, 충남, pp. 231-234(2002).
  23. 신승복, 전수영, 송호준, 박종진, Sanjeev M., 박진원, "LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석," 에너지공학, 18(4), 230-238(2009).
  24. 가스신문, http://www.gasnews.com/news/articleView.html?idxno=43938
  25. 교토대학 환경 보전 센터, 교토대학 친환경 행동 매뉴얼-연구실 탈 온난화편
  26. 에너지관리공단포탈사이트, http://www.kemco.or.kr/

Cited by

  1. Analysis of Greenhouse Gas Reduction Potentials in a Electronic·Electrical components company using LEAP Model vol.22, pp.6, 2013, https://doi.org/10.14249/eia.2013.22.6.667