DOI QR코드

DOI QR Code

Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles

자동차 경량화를 위한 탄소섬유강화 복합재료의 동향

  • Received : 2012.01.04
  • Accepted : 2012.02.13
  • Published : 2012.03.31

Abstract

Recently, the need of developing eco-friendly materials has been required with restriction strengthening on environment and energy saving by the resource depletion worldwide. These trends are not an exception in transport industry including automobile. In addition, these materials have to fulfill not only the high quality and cheap price but also the high-performance which meet the needs of costumer and society. Among the various materials, carbon fiber-reinforced composite which is actively studying for lightweight of the automobile is one of the most suitable candidates. Indeed, the carbon fiber-reinforced composites are used as the essential materials to substitute body and other parts in automobile and the demand is increasing largely. Carbon fiber-applied automobile has improved brake, steering, durability and high fuel efficiency, leading to the energy conservation and minimizing carbon dioxide emissions. This paper focuses on the necessity of carbon fiber-reinforced composites for lightweight of automobile and its technical trends.

최근 전세계적으로 자원 고갈로 인한 에너지 절약과 환경 문제에 관한 규제 강화는 환경 친화적인 소재 개발의 필요성을 가속화시키고 있다. 이러한 추세는 자동차 산업을 포함한 운송 산업도 예외가 아니다. 또한, 기본적으로 단순히 성능이 좋으면서도 값이 저렴한 제품이 아니라, 소비자와 사회의 요구에 부합되는 고기능성 소재의 개발이 필요하다. 이에 부합하는 소재로는 최근 운송 수단의 경량화를 위하여 많은 연구가 진행중인 탄소섬유 복합재료라할 수 있다. 최근 탄소섬유 복합재료는 자동차의 경량화를 위해 차체 및 부품 등 다양한 부분에 적용됨에 따라 그 수요는 크게 증가하고 있고, 차량에 적용시 차체 중량감소에 따른 제동, 조향, 내구 및 연비향상과 이에 따른 에너지 절약 및 이산화탄소 배출을 최소화 하는 장점을 갖는다. 따라서, 본고에서는 자동차의 경량화를 위한 탄소섬유 복합재료의 필요성과 더불어 탄소섬유 복합재료의 기술동향과 나아가야 할 방향에 대하여 살펴보도록 하겠다.

Keywords

References

  1. H. Adam, "Carbon fibre in automotive applications", Mater. Design, 18, 349 (1997). https://doi.org/10.1016/S0261-3069(97)00076-9
  2. S.J. Park and M.K. Seo, "The effects of $MoSi_{2}$ on the oxidation behavior of carbon/carbon composites", Carbon, 39, 1229 (2001). https://doi.org/10.1016/S0008-6223(00)00248-7
  3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, "Recent development in aluminium alloys for the automotive industry", Mater. Sci. Eng., A280, 37 (2000).
  4. G.S. Cole and A.M. Sherman, "Light weight materials for automotive applications", Mater. Charact., 35, 3 (1995). https://doi.org/10.1016/1044-5803(95)00063-1
  5. S.W. Lee and D.G. Lee, "Composite hybrid valve lifter for automotive engines", Compos. Struct., 71, 26 (2005). https://doi.org/10.1016/j.compstruct.2004.09.014
  6. S.U. Khan, A. Munir, R. Hussain, and J. K. Kim, "Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay", Compos. Sci. Technol., 70, 2077 (2010). https://doi.org/10.1016/j.compscitech.2010.08.004
  7. R.H. Dauskardt, R.O. Ritchie, and B.N. Cox, "Fatigue of advance materials", Adv. Mater. Process, 7, 26 (1993).
  8. W. Zhang, R.C. Picu and N. Koratkar, "The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites", Nanotechnology, 19, 285709 (2008). https://doi.org/10.1088/0957-4484/19/28/285709
  9. B. Backman, "Composite structures, design, safety and innovation", Elsevier, 2005.
  10. R.M. Jones, "Mechanics of composite materials", Philadelphia, Tailor Francis, 1999.
  11. E.R.H. Fuchs, F.R. Field, R. Roth, and R.E. Kirchain, "Strategic materials selection in the automobile body:Economic opportunities for polymer composite design", Compos. Sci. Technol., 68, 1989 (2008). https://doi.org/10.1016/j.compscitech.2008.01.015
  12. K.S. Kim and S.J. Park, "Technique status of carbon fibers-reinforced composites for aircrafts", Elast. Compos., 46, 118 (2011).
  13. G. Savage, I. Bomphray, and M. Oxley, "Exploiting the fracture properties of carbon fibre composites to design lightweight energy absorbing structures", Eng. Fail. Anal., 11, 677 (2004). https://doi.org/10.1016/j.engfailanal.2004.01.001
  14. J. Obradovic, S. Boria, and G. Belingardi, "Lightweight design and crash analysis of composite frontal impact energy absorbing structures", Compos. Struct., 94, 423 (2012). https://doi.org/10.1016/j.compstruct.2011.08.005
  15. K.S. Kim, Y.S. Shim, B.J. Kim, L.Y. Meng, S.Y. Lee, and S.J. Park, "Present status and applications of carbon fibers-reinforced composites for aircrafts", Carbon Lett., 11, 235 (2010). https://doi.org/10.5714/CL.2010.11.3.235
  16. Y. Arao, J. Koyanagi, S. Utsunomiya, and H. Kawada, "Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates: Accuracy of the ply angle alignment", Compos. Struct., 93, 1225 (2011). https://doi.org/10.1016/j.compstruct.2010.10.019
  17. S.J. Park, "Interfacial forces and fields: Theory and applications", Ed. J.P. Hsu, Marcel Dekker, New York, 1999.
  18. M. Hussain, A. Nakahira, S. Nishijima, and K. Niihara, "Evaluation of mechanical behavior of CFRC transverse to the fiber direction at room and cryogenic temperature", Composites: Part A, 31, 173 (2000). https://doi.org/10.1016/S1359-835X(99)00060-3
  19. J.A. Rodosts and N.C. Trivedi, "Handbook of fillers and reinforcement plastics", New York, Van Nostrand Reinhold, 1987.
  20. J. Verrey, M.D. Wakeman, V. Michaud, and J.A.E. Månson, "Manufacturing cost comparison of thermoplastic and thermoset RTM for an automotive floor pan", Composites: Part A, 37, 22 (2006).
  21. R. Vipond and C.J. Daniels, "Non-destructive examination of short carbon fibre-reinforced injection moulded thermoplastics", Composites, 16, 14 (1985). https://doi.org/10.1016/0010-4361(85)90652-4
  22. M.D. Wakeman, T.A. Cain, C.D. Rudd, R. Brooks, and A.C. Long, "Compression moulding of glass and polypropylene composites for optimised macro- and micro-mechanical properties II. Glass-mat-reinforced thermoplastics", Compos. Sci. Technol., 59, 709 (1999). https://doi.org/10.1016/S0266-3538(98)00124-9
  23. J. Palmer, L. Savage, O.R. Ghita, and K.E. Evans, "Sheet moulding compound (SMC) from carbon fibre recyclate", Composites: Part A, 41, 1232 (2010). https://doi.org/10.1016/j.compositesa.2010.05.005
  24. H.L.H. Yip, S.J. Pickering, and C.D. Rudd, "Characterisation of carbon fibres recycled from scrap composites using fluidised bed process", Plast. Rubber Compos. Process Appl., 31, 278 (2002). https://doi.org/10.1179/146580102225003047

Cited by

  1. Numerical Study of the Formability of Fiber Metal Laminates Based on Self-reinforced Polypropylene vol.22, pp.3, 2013, https://doi.org/10.5228/KSTP.2013.22.3.150
  2. Analytical Study for the Prediction of Mechanical Properties of a Fiber Metal Laminate Considering Residual Stress vol.23, pp.5, 2014, https://doi.org/10.5228/KSTP.2014.23.5.289
  3. Effect of Thermal History on the Physical Properties of Nylon66 vol.25, pp.1, 2014, https://doi.org/10.14478/ace.2013.1116
  4. The Development of High Performance Nano-composites with Carbon Nanotube vol.26, pp.2, 2014, https://doi.org/10.5764/TCF.2014.26.2.71
  5. A Study on Slip Behavior of Fiber Preform by High Speed Resin Flow in High Pressure Resin Transfer Molding vol.27, pp.1, 2014, https://doi.org/10.7234/composres.2014.27.1.031
  6. Analytical and Experimental Study for Development of Composite Coil Springs vol.38, pp.1, 2014, https://doi.org/10.3795/KSME-A.2014.38.1.031
  7. Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-A.2014.38.12.1345
  8. Research trends in polymer materials for use in lightweight vehicles vol.16, pp.1, 2015, https://doi.org/10.1007/s12541-015-0029-x
  9. Evaluation of Laminate Property using Caulplate Application vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.231
  10. Topologically optimized shape of CFRP front lower control ARM vol.18, pp.4, 2017, https://doi.org/10.1007/s12239-017-0062-0
  11. Energy absorption characteristics of aluminium/CFRP hybrid beam under impact loading vol.22, pp.2, 2017, https://doi.org/10.1080/13588265.2016.1243637
  12. Development of CFRP Tubes for the Light-Weight Propeller Shaft of 4WD SUV Vehicles vol.17, pp.4, 2018, https://doi.org/10.14775/ksmpe.2018.17.4.032