DOI QR코드

DOI QR Code

A Study on Property Change of Acrylic Rubber by Selected Monomers and Crosslinking Agent

선택된 단량체와 가교제에 의한 아크릴고무의 물성 변화에 관한 연구

  • Kim, Jun-Ho (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur-Ryong (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 김준호 (한국기술교육대학교 응용화학공학과) ;
  • 조을룡 (한국기술교육대학교 응용화학공학과)
  • Received : 2012.01.04
  • Accepted : 2012.02.07
  • Published : 2012.03.31

Abstract

Acrylic rubber was synthesized using ethyl acrylate. butyl acrylate, methoxyethyl acrylate as main monomers and glycidyl methacrylate as cure site monomer by emulsion polymerization. Rubber compound was made by adding 2,2-bis[4-(4-aminophenoxy)phenyl]propane as crosslinking agent. Increase of ethyl acrylate content in the main monomer ratio resulted in enhancement of heat resistance due to decrease of glass transition temperature in acrylic rubber. And also oil resistance was increased with increasing content of ethyl acrylate because ethyl acrylate has the highest ester concentration in the three main monomers. With content of 2,2-bis[4-(4-aminophenoxy)phenyl]propane, both tensile strength and elongation were increased until 2 phr, but in higher content than that, they decreased owing to reduction of viscosity and elongation by increase of crosslinking density.

주단량체로 에틸 아크릴레이트, 부틸 아크릴레이트, 메톡시에틸 아크릴레이트, 가교 단량체로 글리시딜 메타아크릴레이트를 유화중합하여 아크릴고무를 제조한 후, 가교제로써 2,2-bis[4-(4-aminophenoxy)phenyl]propane를 첨가하여 고무컴파운드를 제조하였다. 주단량체의 조성에서 에틸 아크릴레이트의 함량이 증가하면 내열성이 증가하는 경향을 보였는데 이는 아크릴고무의 유리전이온도가 감소되었기 때문이다. 또한 에틸 아크릴레이트의 에스테르 그룹 농도가 3개의 주단량체 중 가장 높기 때문에 에틸 아크릴레이트 함량이 증가할수록 내유성이 향상되었다. 2,2-Bis[4-(4-aminophenoxy)phenyl]propane의 함유량에 따른 영향은 2 phr 첨가까지 인장강도와 신장율은 증가하지만, 그 이상의 첨가에서는 가교밀도의 증가에 따른 점성과 탄성이 감소하여 그 값들이 감소하였다.

Keywords

References

  1. N. C. Baek, "Rubber Material & Processing Technology", 2nd eds., The Rubber Society of Korea, 54, 7 (2008).
  2. D. R. Bassett and K. L. Hoy, "Nonuni form Emulsion Polymerization, in Emulsion Polymers and Emulsion Polymerization", D. R. Bassett and A. E. Hamielec, Eds., ACS Symp. Ser., 165, 371 (1981).
  3. L. A. Goettler, K. R., Richwine, and F. G. Wille, "The Rheology and Processing of Olefin-Based Thermoplastic Vulcanizates", Rubber Chem. Technol, 1448, 55 (1982).
  4. M. W. Kim, "Recent Rubber Industrial Chemistry", SunJin Cultural History, 133, 11 (2006).
  5. A. J. F. Carvalho, A. E. Job, N. Alves, A. A. S. Curvelo, and A. Gandini, Carbohydrte Polymer, 53, 95 (2003). https://doi.org/10.1016/S0144-8617(03)00005-5
  6. G. Odian. "The Principle of Polymerization", 3th, sile, New York 1991.
  7. M. S. El-Aasser, "Emulsion Polymerization", p. 1, ed. by F. Candou and R. H. Ottewill, Kluwer Academic Publishers, New York, 1990.
  8. J. L. Gardon, "In Emulsion Polymerization", p. 225, Wiley Interscience, New York, 1982.
  9. P. A. Lovell and M. S. El-Aasser, "Emulsion Polymerization and Emulsion Polymers", p. 3-53, John Wiley and Sons, New York, 1997.
  10. Lee, Ki Mun and Cho, Ur Ryong, Elastomers and Composites, 44, 308 (2009).
  11. Khairi Nagdi, "Rubber as an Engineering Material: Guideline for Users", p. 190-214, 2001.
  12. Nigel A. St John and Graeme A. George, "Cure Kinetics and Mechanisms of a Tetraglycidyl-4,4-diaminodipheny-l-methane/ using near I.R. spectroscopy", Polymer, 33, 13 (1992).
  13. Nourredine Amdouni, Henry Sautereau, Jean-Francois Gerard and Jean-Pierre Pascault, "Epoxy Networks Based on Dicyandiamide: Effect of the Cure Cycle on Viscoelastic and Mechanical Properties", Polymer, 31, 1245 (1990). https://doi.org/10.1016/0032-3861(90)90215-K