Solvent Resistance and Gas Permeation Property of PEI-PDMS Hollow Fiber Composite Membrane for Separation and Recovery of VOCs

VOCs의 분리 및 회수를 위한 PEI-PDMS 중공사 복합막의 내용매성 및 기체 투과 특성

  • Received : 2012.02.14
  • Accepted : 2012.02.28
  • Published : 2012.02.29

Abstract

To separate and recover of VOCs, supporting membranes using PEI were prepared by phase separation method and it was coated with PDMS to prepare PEI-PDMS hollow composite membrane. To investigate characteristic of prepared membrane, pure gas permeability was measured using oxygen and nitrogen, the stage cut and permeance property with feed concentration were evaluated using xylene, ethyl benzene, toluene and cyclohexane. Also, to check solvent resistance on VOCs, stress-strain property of membrane with immersion time in solvent were measured by DMA. The permeance value of $O_2$ and $N_2$ showed 63 GPU and 30 GPU respectively. Permeated VOCs concentration was decreased with increasing stage cut. But, conversely, recovery efficiency that was increased with increasing stage cut. As a result of DMA test, the stress and strain were 11.93 MPa and 13.52%, respectively.

VOCs의 분리 및 회수를 위해 PEI 고분자를 이용하여 상분리법으로 중공사 지지체 분리막을 제조하였고 PDMS 고분자를 코팅하여 PEI-PDMS 중공사 복합막을 제조하였다. 제조된 기체 분리막의 특성을 알아보기 위하여 산소와 질소를 이용하여 순수 기체 투과도를 측정하였으며, xylene, ethyl benzene, toluene, cyclohexane을 이용하여 stage cut과 feed 농도 변화에 따른 투과성능을 측정하였다. 또한 VOCs에 대한 내용매성을 알아보기 위하여 DMA을 이용하여 용매 함침 시간에 따른 stress-strain 특성을 알아보았다. 산소와 질소의 순수 투과도는 각각 63 GPU와 30 GPU를 나타내었고, stage cut이 증가할수록 permeate VOCs 농도는 감소하는 경향을 나타내었다. Recovery efficiency의 경우 permeate 농도와는 반대로 state cut이 증가할수록 증가하는 경향을 나타내었다. DMA 인장 테스트 결과 stress는 11.93 MPa, strain은 13.52%로 측정되었다.

Keywords

References

  1. S. H. Lee, C. K. Yeom, H. Y. Song, and J. M. Lee, "Influence of Concentration Polarization Phenomenon on the Vapor Permeation Behavior of VOCs/$N_{2}$ Mixture Through PDMS Membrane", Membrane Journal, 11, 1 (2001).
  2. R. Atkinson, "Atmospheric chemistry of VOCs and NOx", Atmos. Environ., 34, 12 (2000).
  3. Y. M. Kim, S. Harrad, and R. M. Harrison, "Concentrations and sources of vocs in urban domestic and public microenvironments", Environ. Sci. Technol., 35, 6 (2001).
  4. M. J. Ruhl, "Recover VOCs via adsorption on activated carbon", Chem. Eng. Prog., 89, 7 (1993).
  5. S. Y. Ha, "Preparation method of gas separation membrane and gas separation membrane prepared therefrom", KR Patent 1008356550000, May 30 (2008).
  6. S. A. Stern, "Polymer for gas separation : the next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  7. L. M. Robeson, "Polymer membranes for gas separation", Curr. Opin. Solid State Mater. Sci., 4, 549 (1999). https://doi.org/10.1016/S1359-0286(00)00014-0
  8. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and properties of hollow fiber membrane for gas separation using CTA", Membrane Journal, 21, 98 (2010).
  9. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and properties of chlorine-resistance loose reverse osmosis hollow fiber membrane", Membrane Journal, 20, 304 (2010).
  10. H. C. Koh, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and W. M. Choi, "Separation and purification of bio gas by hollow fiber gas separation membrane module", Membrane Journal, 21, 2 (2011).
  11. I. Pinnau and B. D. Freeman, "Formation and modification of polymeric membranes", J. Membr. Sci., 744, 1 (1999).
  12. M. Dr. Heinz-Joachim and F. Elizabeth, "Modified membrane", Au Patent 2002214802B2, July 25 (2002).
  13. J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation", J. Membr. Sci., 215, 75 (2003). https://doi.org/10.1016/S0376-7388(02)00603-8
  14. P. Pandey and R. S. Chauhau, "Membrane for gas separation", Prog. Polym. Sci., 26, 6 (2001).
  15. W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993). https://doi.org/10.1016/0376-7388(93)80013-N