Preparation of Hydroxy Polyimde Membranes for Gas Separation by Phase Inversion Method

상전이법을 이용한 기체 분리용 Hydroxy Polyimide 막의 제조

  • Woo, Seung-Moon (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Choi, Jong-Jin (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University)
  • 우승문 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단) ;
  • 최종진 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단) ;
  • 남상용 (경상대학교 나노신소재공학부, 공학연구원, 아이큐브사업단)
  • Received : 2012.02.14
  • Accepted : 2012.02.28
  • Published : 2012.02.29

Abstract

In this study, for preparation of gas separation membrane with high permeability, hydroxy polyimide was synthesized using 6FDA and APAF. Synthesis of HPI was confirmed by H-NMR and FT-IR, thermal property of membrane was characterized by Differential scanning calorimetric (DSC) and thermogravimetric analyzer (TGA). Especially, the synthesized HPI can possible to search conversion to PBO at $450^{\circ}C$. To obtain the membrane having high permeability, ternary system consist of polymer, solvent and non-solvent additive was introduced, asymmetric HPI flat sheet membrane was prepared by phase inversion method. Finally, the change of morphology with each component was observed through FE-SEM.

본 연구에서는 고투과성을 가지는 기체분리막 제조를 위해 6FDA와 APAF를 이용하여 하이드록시 폴리이미드를 합성하였다. H-NMR과 FT-IR 분석을 통해서 HPI의 합성여부를 확인하였으며 열적특성을 알아보기 위해 Differential scanning calorimetry (DSC)와 thermogravimetric analyzer (TGA)를 측정하였다. 특히 합성된 HPI는 약 $450^{\circ}C$에서 polybenzoxazole (PBO)로 변환이 됨을 확인 가능하였다. 고투과성 고분자 분리막의 제조를 위해 고분자, 용매 그리고 비용매-첨가제를 포함하는 3성분계의 시스템을 도입하였으며, 상전이법을 이용하여 HPI 비대칭 평막을 제조하였다. 최종적으로 각성분들에 따른 모폴로지 변화를 전계방출주사현미경(FE-SEM)을 통해 확인할 수 있었다.

Keywords

References

  1. E. C. Gregor, G. B. Tanny, E. Shchori, and Y. Kenigsberg, "SUNBEAM PROCESS™ Microporous Membranes; A high performance barrier for protective clothing", J. Coated Fabrics, 18, 26 (1988).
  2. V. D. Alves, B. Koroknai, K. Belafi-Bako, and I. M. Coelhoso, "Using membrane contactors for fruit juice concentration", Desalination, 162, 263 (2003).
  3. R. Nagel and T. Will, "Membrane processes for water treatment in the semiconductor industry", Ultrapure Water, 16, 35 (1999).
  4. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications-a review", J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  5. W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  6. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  7. K. Nakagawa, "Optical anisotropy of polyimide", J. Appl. Polym. Sci., 41, 2049 (1990). https://doi.org/10.1002/app.1990.070410911
  8. C. E. Hoyle and E. T. Anzures, "Photodegradation of polyimides. I. A spectral, viscometric, chromatographic, and weight loss investigation of polyimides based on a hexafluorinated dianhydride", J. Appl. Polym. Sci., 43, 1 (1991). https://doi.org/10.1002/app.1991.070430101
  9. C. Ryu, J. Lee, T. Eom, J. Baek, H. Eom, and C. Yi, "$CO_{2}$ capture from flue gas using dry regenerable sorbents", National Energy Technology Laboratory, Morgantown, WV (2004).
  10. S. Lee, H. Chae, S. Lee, B. Choi, C. Yi, J. Lee, C. Ryu, and J. C. Kim, "Development of regenerable MgO-Based Sorbent Promoted with K2CO3 for $CO_{2}$ Capture at Low Temperatures", Enciron. Sci. Technol., 42, 2736 (2008). https://doi.org/10.1021/es702693c
  11. C. Yi, S. Jo, T. Seo, J. Lee, and C. Ryu, "Continuous operation of the potassium-based dry sorbent $CO_{2}$ capture process with two fluidized-bed reactors", Int. J. Greenh, Gas, Con., 1, 31 (2007). https://doi.org/10.1016/S1750-5836(07)00014-X
  12. X. Ma, X. Wang, and C. Song, "The second generation of nano-porous molecular-basket sorrbent fo $CO_{2}$ capture from flue gas", The 25th Annual International Pittsburgh Coal Conference, Pittsburgh, U.S.A. (2008).
  13. K. Adamskaa, A. Voelkela, and K. Hebergerb, "Selection of solubility parameters for characterization of pharmaceutical excipients", J. Chromatogr. A., 1171, 90 (2007). https://doi.org/10.1016/j.chroma.2007.09.034
  14. K. Adamska and A. Voelkel, "Hansen solubility parameters for polyethylene glycols by inverse gas chromatography", J. Chromatogr. A., 1132, 260 (2006). https://doi.org/10.1016/j.chroma.2006.07.066
  15. D. W. van Krevelen, "Properties of polymer", pp. 55, Elsevier, Amsterdam, Netherlands (1990).
  16. A. Guner, "The algorithmic calculations of solubility parameter for the determination of interactions in dextran/certain polar solvent systems", Eur. Polym. J., 40, 1587 (2004). https://doi.org/10.1016/j.eurpolymj.2003.10.030
  17. J. Han, D. Yang, S. Zhang, X. Liu, Z. Zhang, and X. Jian, "Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane", J. Membr. Sci., 365, 311 (2010). https://doi.org/10.1016/j.memsci.2010.09.022
  18. F. Lin, D. Wang, and J. Lai, "Asymmetric TPX membranes with high gas flux", J. Membr. Sci., 110, 25 (1996). https://doi.org/10.1016/0376-7388(95)00211-1
  19. K. Chun, S. Jang, H. Kim, Y. Kim, H. Han, and Y. Joe, "Effects of solvent on the pore formation in asymmetric 6FDA-4,4' ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors", J. Membr. Sci., 169, 197 (2000). https://doi.org/10.1016/S0376-7388(99)00336-1
  20. D. T. Clausi1 and W. J. Koros, "Formation of defect-free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000). https://doi.org/10.1016/S0376-7388(99)00276-8
  21. M. L. Yeow, Y. T. Liu, and K. Li, "Morphological Study of Poly(vinylidene fluoride) Asymmetric Membranes: Effects of the Solvent, Additive, and Dope Temperature", J. Appl. Polym. Sci., 92, 1782 (2004). https://doi.org/10.1002/app.20141
  22. M. A. Aroon, A. F. Ismail, M. M. Montazer-Rahmati, and T. Matsuura, "Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent", Sep. Purif. Technol., 72, 194 (2010). https://doi.org/10.1016/j.seppur.2010.02.009