DOI QR코드

DOI QR Code

Technique for the Measurement of Crack Widths at Notched / Unnotched Regions and Local Strains

콘크리트의 노치 및 비노치 구역에서의 균열폭 및 국부 변형률 정밀 측정기법

  • Choi, Sok-Hwan (Dept. of Civil and Environmental Engineering, Kookmin University) ;
  • Lim, Bub-Mook (Dept. of Civil and Environmental Engineering, Kookmin University) ;
  • Oh, Chang-Kook (Dept. of Civil and Environmental Engineering, Kookmin University) ;
  • Joh, Chang-Bin (SOC Research Institute, Korea Institute of Construction Technology)
  • 최석환 (국민대학교 건설시스템공학부) ;
  • 임법묵 (국민대학교 건설시스템공학부) ;
  • 오창국 (국민대학교 건설시스템공학부) ;
  • 조창빈 (한국건설기술연구원 SOC성능연구소)
  • Received : 2012.02.01
  • Accepted : 2012.03.15
  • Published : 2012.04.30

Abstract

Crack widths play an important role in the serviceability limit state. When crack widths are controlled sufficiently, the reinforcement corrosion can be reduced using only existing concrete cover thickness due to low permeability in the region of finely distributed hair-cracks. Thus, the knowledge about the tensile crack opening is essential in designing more durable concrete structures. Therefore, numerous researches related to the topic have been performed. Nevertheless accurate measurement of a crack width is not a simple task due to several reasons such as unknown potential crack formation location and crack opening damaging strain gages. In order to overcome these difficulties and measure precise crack widths, a displacement measurement system was developed using digital image correlation. Accuracy calibration tests gave an average measurement error of 0.069 pixels and a standard deviation of 0.050 pixels. Direct tensile test was performed using ultra high performance concrete specimens. Crack widths at both notched and unnotched locations were measured and compared with clip-in gages at various loading steps to obtain crack opening profile. Tensile deformation characteristics of concrete were well visualized using displacement vectors and full-field displacement contour maps. The proposed technique made it possible to measure crack widths at arbitrary locations, which is difficult with conventional gages such as clip-in gages or displacement transducers.

균열폭은 콘크리트 구조물의 사용성을 평가하는 측면에서는 매우 중요하다. 균열폭을 일정값 이하로 유지할 수 있다면 낮은 투수성을 유지할 수 있으므로 콘크리트의 피복만으로도 염소이온에 의한 부식을 방지할 수 있다. 따라서 내구적인 구조물을 설계하기 위해서는 인장 균열에 대한 충분한 정보가 필요하다. 그러나 균열폭을 정확하게 계측하는 데는 몇 가지 어려움이 있다. 먼저, 균열의 생성 위치를 미리 알기 어렵다. 또한 변형률 게이지 등 탄성영역에서 사용되는 게이지는 사용할 수 없다. 이러한 문제를 극복하기 위해서 화상상관기법 및 고해상도 CCD를 이용한 균열 및 변위계측 시스템을 개발하였다. 이를 통해서 임의의 위치에 생성되는 인장균열폭을 측정하는 방법을 제시하였다. 변위계측 정밀도 검증을 실시한 결과 평균오차는 0.069 픽셀, 표준편차는 0.050 픽셀이었다. UHPC를 이용하여 직접인장 실험을 수행하였다. 노치 구역과 비노치 구역에서 각각 균열을 측정하는 방법을 제시하고, 하중단계에 따라서 클립인 게이지의 결과와 비교하여 설명하였다. 시편의 전면에서 변위벡터를 구성하고, 등변위도 및 변형률도를 작성하였다. 다양한 실험에 적용할 수 있는 범용의 기법이기 때문에 임의의 균열폭 혹은 전면변위 측정 분야에서 많이 활용될 수 있을 것이다.

Keywords

References

  1. 국토해양부제정 콘크리트 구조설계기준, 한국콘크리트학회, 기문당, 2007, 328 pp.
  2. 김정용, 조윤호, "이미지프로세싱기법을 이용한 균열 인식 알고리즘 및 프로그램 개발," 대한토목학회 논문집, 22권, 4-D호, 2002, pp. 639-647.
  3. Franke, E. A., Wenzel, D. J., and Davidson, D. L., "Measurement of Microdisplacements by Machine Vision Photogrammetry (DISMAP)," Review of Scientific Instruments, Vol. 62, No. 5, 1991, pp. 1270-1279. https://doi.org/10.1063/1.1142484
  4. Xi, Y., Bergstrom, T. B., and Jennings, H. M., "Image Intensity Matching Technique: Application to the Environmental Scanning Electron Microscope," Computational Materials Science, Vol. 2, No. 2, 1994, pp. 249-260. https://doi.org/10.1016/0927-0256(94)90106-6
  5. Choi, S. and Shah, S. P., "Deformation Measurement in Concrete under Compression Using Image Correlation," Journal of Experimental Mechanics, Vol. 37, No. 3, 1997, pp. 307-313. https://doi.org/10.1007/BF02317423
  6. Choi, S. and Shah, S. P., "Fracture Mechanism in Cement- Based Materials Subjected to Compression," Journal of Engineering Mechanics-ASCE, Vol. 124, No. 1, 1998, pp. 94-102. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:1(94)
  7. 김성완, 김남식, "Digital Image Correlation 기법을 이용한 구조물의 다중 동적변위응답 측정," 한국지진공학회논문집, 13권, 3호, 2009, pp. 11-19.
  8. Peters, W. H. and Ranson, W. F., "Digital Imaging Techniques in Experimental Stress Analysis," Optical Engineering, Vol. 21, No. 3, 1982, pp. 427-431.
  9. Chu, T. C., Ranson, W. F., Sutton, M. A., and Peters, W. H., "Applications of Digital-Image-Correlation Techniques to Experimental Mechanics," Experimental Mechanics, Vol. 25, No. 3, 1985, pp. 232-244. https://doi.org/10.1007/BF02325092
  10. James, M. R., Morris, W. L., and Cox, B. N., A, "A High Accuracy Automated Strain-Field Mapper," Experimental Mechanics, Vol. 30, No. 1, 1990, pp. 60-68. https://doi.org/10.1007/BF02322704
  11. Smith, B. W., Li, X., and Tong, W., "Error Assessment for Strain Mapping by Digital Image Correlation," Experimental Techniques, Vol. 22, No. 4, 1998, pp. 19-21. https://doi.org/10.1111/j.1747-1567.1998.tb02332.x
  12. Sutton, M. A., McNeill, S. R., Helm, J. D., and Chao, Y. J., Photomechanics, Springer-Verlag, Edited by PK Rastogi, Berlin Heidelberg, 2000, pp. 323-372.
  13. Tiwari, V., Sutton, M. A., and McNeill, S. R., "Assessment of High Speed Imaging Systems for 2D and 3D Deformation Measurements: Methodology Development and Validation," Experimental Mechanics, Vol. 47, No. 4, 2007, pp. 561-579. https://doi.org/10.1007/s11340-006-9011-y
  14. Bolander, J. E., Choi, S., and Duddukuri, S. R., "Fracture of Fiber-Reinforced Cement Composites: Effects of Fiber Dispersion," International Journal of Fracture (IJF), Vol. 154, No. 1-2, 2008, pp. 73-86. https://doi.org/10.1007/s10704-008-9269-4
  15. Leutbecher, T. and Fehling, E., "Crack width Control for Combined Reinforcement of Rebars and Fibres Exemplified by Ultra-High-Performance Concrete," fib Task Group, Ultra High Performance Fibre Reinforced Concrete - UHPFRC, Varenna, 2008.
  16. Li, V. C. and Fischer, G., "Reinforced ECC - An Evolution from Materials to Structures," Proceedings of the 1st fib Congress - Concrete Structures in the 21st Century, 2002, pp. 105-122.
  17. Choi, S., Kim, J. H., and Chang, S. P., "Stability and Sensitivity of Fracture in Experiments with Concrete," KSCE Journal of Civil Engineering, Vol. 2, No. 3, 1998, pp. 253-263.
  18. Choi, S. and Shah, S. P., "Propagation of Microcracks in Concrete Studied with Subregion Scanning Computer Vision (SSCV)," ACI Materials Journal, Vol. 96, No. 2, 1999, pp. 255-260.

Cited by

  1. Headed bars in simulated exterior beam-column joints of Ultra-high-performance fiber-reinforced concrete vol.18, pp.4, 2016, https://doi.org/10.12989/cac.2016.18.4.463