DOI QR코드

DOI QR Code

Synthesis of Montmorillonite/Poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) Superabsorbent Composite and the Study of its Adsorption

  • Zhu, Linhui (College of Chemical and Environmental Engineering, Shandong University of Science and Technology) ;
  • Zhang, Lili (College of Chemical and Environmental Engineering, Shandong University of Science and Technology) ;
  • Tang, Yaoji (College of Chemical and Environmental Engineering, Shandong University of Science and Technology)
  • Received : 2011.10.07
  • Accepted : 2012.02.16
  • Published : 2012.05.20

Abstract

A novel superabsorbent composite was prepared by intercalation polymerization of acrylic acid (AA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) in the presence of montmorillonite (MMT), using ammonium persulfate (APS) as an initiator and $N,N'$-methylenebisacrylamide (MBA) as a cross linker. The superabsorbent composite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Maximum absorbency of the composite in distilled water and 0.9% sodium chloride solution was 722 and 108 g/g, respectively. The composite was used for removal of heavy metal ions from aqueous solutions. Maximum amount of adsorption for $Ni^{2+}$, $Cu^{2+}$ and $Pb^{2+}$ was 211.0, 159.6 and 1646.0 mg/g, respectively, and the adsorption was in accordance with both Langmuir and Freundlich model. The composite could be regenerated and reused in wastewater treatment.

Keywords

References

  1. Chen, Q. Y.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M. Water Res. 2009, 43, 2605-2614. https://doi.org/10.1016/j.watres.2009.03.007
  2. Landaburu-Aguirre, J.; García, V.; Pongracz, E.; Keiski, R. L. Desalination 2009, 240, 262-269. https://doi.org/10.1016/j.desal.2007.11.077
  3. Duan, J. C.; Lu, Q.; Chen, R. W.; Duan, Y. Q.; Wang, L. F.; Gao, L.; Pan, S. Y. Carbohydr. Polym. 2010, 80, 436-441. https://doi.org/10.1016/j.carbpol.2009.11.046
  4. Nanseu-Njiki, C. P.; Tchamango, S. R.; Ngom, P. C.; Darchen, A.; Ngameni, E. J. Hazard. Mater. 2009, 168, 1430-1436. https://doi.org/10.1016/j.jhazmat.2009.03.042
  5. Doula, M. K. Water Res. 2009, 43, 3659-3672. https://doi.org/10.1016/j.watres.2009.05.037
  6. Jiang, M. Q.; Jin, X. Y.; Lu, X. Q.; Chen, Z. L. Desalination 2010, 252, 33-39. https://doi.org/10.1016/j.desal.2009.11.005
  7. Liu, M. Z.; Liang, R.; Zhan, F. L.; Liu, Z.; Niu, A. Z. Polym. Advan. Technol. 2006, 47, 430-438.
  8. Kosemund, K.; Schlatter, H.; Ochsenhirt, J. L.; Krause, E. L.; Marsman, D. S.; Erasala, G. N. Regul. Toxicol. Pharmacol. 2009, 53, 81-89. https://doi.org/10.1016/j.yrtph.2008.10.005
  9. Wang, Q.; Zhang, J. P.; Wang, A. Q. Carbohydr. Polym. 2009, 78, 731-737. https://doi.org/10.1016/j.carbpol.2009.06.010
  10. Kasguz, H.; Durmus, A. Polym. Advan. Technol. 2008, 19, 838- 845. https://doi.org/10.1002/pat.1045
  11. Su, X. F.; Zhang, G.; Xu, K.; Wang, J. H.; Song, C. L.; Wang, P. X. Polym. Bull. 2008, 60, 69-78. https://doi.org/10.1007/s00289-007-0843-0
  12. Li, A.; Wang, A. Q. Eur. Polym. J. 2005, 41, 1630-1637. https://doi.org/10.1016/j.eurpolymj.2005.01.028
  13. Guclu, G.; Al, E.; Emik, S.; yim, T. B.; Ozgümü , S.; Ozyurek, M. Polym. Bull. 2010, 65, 333-346. https://doi.org/10.1007/s00289-009-0217-x
  14. Bao, Y.; Ma, J. Z.; Li, N. Carbohydr. Polym. 2011, 84, 76-82 https://doi.org/10.1016/j.carbpol.2010.10.061
  15. Wu, X. J.; Yu, Y. F.; Yuan, J. Z. Non-Metallic Mines 2008, 31, 1-2, 61.
  16. Su, X. F.; Zhang, G.; Xu, K.; Wang, J. H.; Song, C. L.; Wang, P. X. Polym. Bull. 2008, 60, 69-78. https://doi.org/10.1007/s00289-007-0843-0
  17. Zhang, J.; Li, A.; Wang, A. Q. Carbohydr. Polym. 2006, 65, 150- 158. https://doi.org/10.1016/j.carbpol.2005.12.035
  18. Molu, Z. B.; Seki, Y.; Yurdako , K. Polym. Bull. 2010, 64, 171- 183. https://doi.org/10.1007/s00289-009-0155-7
  19. Zhang, Y.; Fan, L.; Cheng, L.; Zhang, L.; Chen, H. Polym. Eng. Sci. 2009, 49, 264-271. https://doi.org/10.1002/pen.21252
  20. Tong, X.; Zhao, H.; Tang, T.; Feng, Z.; Huang, B. J. Polym. Sci. Part. A: Polym. Chem. 2002, 40, 1706-1711. https://doi.org/10.1002/pola.10251
  21. Liang, R.; Liu, M. Z.; Wu, L. React. Funct. Polym. 2007, 67, 769- 779. https://doi.org/10.1016/j.reactfunctpolym.2006.12.007
  22. Kabiri, K.; Zohuriaan-Mehr, M. J. Polym. Adv. Technol. 2003, 14, 438-444. https://doi.org/10.1002/pat.356
  23. Gao, J. Z.; Ma, D. L.; Lu, Q. F.; Li, Y.; Li, X. F.; Yang, W. Plasma Chem. Plasma Process 2010, 30, 1-11. https://doi.org/10.1007/s11090-009-9207-x
  24. Yang, R. C.; Mu, Y. C.; Yun, D.; Yang, J. Polym. Mater. Sci. Eng. 2009, 25, 64-67.
  25. Lin, Y. B.; Xing, J.; Shi, Y. F.; Cai, T. J. Environmental Protection Science 2008, 34, 21-24.

Cited by

  1. Characterization of Some Hydrogels Used in Water Purification: Correlation of Swelling and Free-Volume Properties vol.05, pp.03, 2015, https://doi.org/10.4236/ojopm.2015.53009
  2. A novel polyacrylamide-based superabsorbent with temperature switch for steam breakthrough blockage vol.132, pp.24, 2015, https://doi.org/10.1002/app.42067
  3. A novel comparative study: synthesis, characterization and thermal degradation kinetics of a terpolymer and its composite for the removal of heavy metals vol.24, pp.3, 2015, https://doi.org/10.1007/s13726-015-0315-6
  4. -2-acrylamido-2-methyl-1-propane sulfonic acid) hydrogel composite and its sorption of lead, cadmium, and zinc ions vol.47, pp.6, 2015, https://doi.org/10.1177/0095244314526737
  5. Use of laponite as adsorbents for Ni(II) removal from aqueous solution pp.19447442, 2017, https://doi.org/10.1002/ep.12749
  6. Adsorption characteristics of Cr (III) onto starch-graft-poly(acrylic acid)/organo-modifed zeolite 4A composite: A novel path to the adsorption mechanisms vol.39, pp.4, 2016, https://doi.org/10.1002/pc.24056
  7. Preparation and characterization of poly(acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption vol.296, pp.4, 2018, https://doi.org/10.1007/s00396-018-4277-z
  8. –montmorillonite nanocomposites with peroxidase activity vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03880A
  9. -(2-acrylamido-2-methylpropanesulfonic acid)]–ZnO nanocomposite gel pp.1520-5754, 2018, https://doi.org/10.1080/01496395.2018.1541094
  10. Sorption behavior of methylene blue and rhodamine B mixed dyes onto chitosan graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid) hydrogel pp.07306679, 2018, https://doi.org/10.1002/adv.21932
  11. Preparation and the swelling properties of sodium alginate graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid)/graphene oxide hydrogel composite pp.07306679, 2018, https://doi.org/10.1002/adv.21960
  12. Preparation and absorption studies of poly(acrylic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid)/graphene oxide superabsorbent composite pp.1436-2449, 2019, https://doi.org/10.1007/s00289-018-2446-3
  13. Synthesis of Organo-Montmorillonite/Sodium Alginate Graft Poly(Acrylic Acid -Co-2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid) Superabsorbent Composite and Its Adsorption Studies vol.22, pp.4, 2012, https://doi.org/10.1177/096739111402200408
  14. Preparation of carboxymethyl cellulose‐g‐poly (acrylamide)/montmorillonite superabsorbent composite as a slow‐release urea fertilizer vol.29, pp.7, 2012, https://doi.org/10.1002/pat.4315
  15. Removal of methylene blue dye from aqueous solution by semi‐interpenetrating polymer network hybrid hydrogel: Optimization through Taguchi method vol.57, pp.10, 2012, https://doi.org/10.1002/pola.29361
  16. Synthesis and Swelling Behavior of Poly(acrylic acid)/Graphite Oxide Superabsorbent Composite vol.61, pp.4, 2019, https://doi.org/10.1134/s1560090419040134
  17. Synthesis and the Swelling Behavior of Sodium Alginate Graft Poly (Acrylic Acid-co-acrylamide)/Graphite Oxide Super Absorbent Composite vol.61, pp.5, 2012, https://doi.org/10.1134/s1560090419050221
  18. Super Effective Removal of Toxic Metals Water Pollutants Using Multi Functionalized Polyacrylonitrile and Arabic Gum Grafts vol.11, pp.12, 2012, https://doi.org/10.3390/polym11121938
  19. Preparation of Chitosan Graft Polyacrylic Acid/Graphite Oxide Composite and the Study of its Adsorption Properties of Cationic Dyes vol.62, pp.3, 2020, https://doi.org/10.1134/s0965545x20030141
  20. Synthesis of graphene oxide doped poly(2-acrylamido-2-methyl propane sulfonic acid) [GO@p(AMPS)] composite hydrogel with pseudo-plastic thixotropic behavior vol.77, pp.8, 2012, https://doi.org/10.1007/s00289-019-02951-4
  21. Synthesis and Characterization of Polymerized Acrylamide Coupled with Acrylamido-2-Methyl-1-Propane Sulfonic Acid-Montmorillonite Structure as a Novel Nanocomposite for Cd (II) Removal from Aqueous So vol.65, pp.8, 2012, https://doi.org/10.1021/acs.jced.0c00385
  22. Effective removal of doxycycline from aqueous solution using CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan vol.28, pp.32, 2021, https://doi.org/10.1007/s11356-021-13584-4
  23. One-Pot Synthesis of Some New s-Triazole Derivatives and Their Potential Application for Water Decontamination vol.6, pp.39, 2012, https://doi.org/10.1021/acsomega.1c03675
  24. Cr(VI) adsorption on binary and ternary composites of raw cocoa shell with magnetic nanoparticle and Prussian blue vol.17, pp.None, 2012, https://doi.org/10.1016/j.enmm.2021.100625