DOI QR코드

DOI QR Code

Effect of interferon-γ on the fusion of mononuclear osteoclasts into bone-resorbing osteoclasts

  • Kim, Jeung-Woo (Department of Orthopaedic Surgery, Division Rheumatology, Wonkwang University School of Medicine) ;
  • Lee, Myeung-Su (Department of Internal Medicine, Division Rheumatology, Wonkwang University School of Medicine) ;
  • Lee, Chang-Hoon (Department of Internal Medicine, Division Rheumatology, Wonkwang University School of Medicine) ;
  • Kim, Ha-Young (Department of Internal Medicine, Division of Endocrinology and Metabolism, Sanbon Medical Center) ;
  • Chae, Soo-Uk (Department of Orthopaedic Surgery, Gunsan Medical Center) ;
  • Kwak, Han-Bok (Department of Anatomy, Wonkwang University School of Medicine) ;
  • Oh, Jae-Min (Department of Anatomy, Wonkwang University School of Medicine)
  • Received : 2011.12.13
  • Accepted : 2012.01.16
  • Published : 2012.05.31

Abstract

Osteoclasts are multinucleated cells that are formed by the fusion of pre-fusion osteoclasts (pOCs). The fusion of pOCs is known to be important for osteoclastic bone resorption. Here, we examined the effect of IFN-${\gamma}$ on the fusion of pOCs. IFN-${\gamma}$ greatly increased the fusion of pOCs in a dose-dependent manner. Furthermore, IFN-${\gamma}$ induced pOC fusion even in hydroxyapatite-coated plates used as a substitute for bone. The resorption area of pOCs stimulated with IFN-${\gamma}$ was significantly higher than that of the control cells. IFN-${\gamma}$ induced the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which is responsible for the fusion of pOCs. IFN-${\gamma}$ enhanced DC-STAMP expression in a dose-dependent manner. The mRNA expression of c-Fos and nuclear factor of activated T cells (NFAT) c1 was enhanced in the pOCs treated with IFN-${\gamma}$. Taken together, these results provide a new insight into the novel role of IFN-${\gamma}$ on the fusion of pOCs.

Keywords

References

  1. Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  2. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/er.20.3.345
  4. Tsukii, K., Shima, N., Mochizuki, S., Yamaguchi, K., Kinosaki, M., Yano, K., Shibata, O., Udagawa, N., Yasuda, H., Suda, T. and Higashio, K. (1998) Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem. Biophys. Res. Commun. 246, 337-341. https://doi.org/10.1006/bbrc.1998.8610
  5. Kong, Y. Y., Yoshida, H., Sarosi, I., Tan, H. L., Timms, E. and Capparelli, C. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymphnode organogenesis. Nature 397, 315-323. https://doi.org/10.1038/16852
  6. Fuller, K., Wong, B., Fox, S., Choi, Y. and Chambers, T. J. (1998) TRANCE is necessary and sufficient for osteoblast- mediated activation of bone resorption in osteoclasts. J. Exp. Med. 188, 997-1001. https://doi.org/10.1084/jem.188.5.997
  7. Rodan, G. A. and Martin, T. J. (2000) Therapeutic approaches to bone diseases. Science 289, 1508-1514. https://doi.org/10.1126/science.289.5484.1508
  8. Josien, R., Wong, B. R., Li, H. L., Steinman, R. M. and Choi, Y. (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J. Immunol. 162, 2562-2568.
  9. Matsuo, K., Owens, J. M., Tonko, M., Elliott, C., Chambers, T. J. and Wagner, E. F. (2000) Fosl1 is a transcription target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184-187. https://doi.org/10.1038/72855
  10. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  11. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Ohnishi, H., Matozaki, T., Kodama, T., Taniguchi, T., Takayanagi, H. and Takai, T. (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763. https://doi.org/10.1038/nature02444
  12. Mocsai, A., Humphrey, M. B., Van Ziffle, J. A., Hu, Y., Burghardt, A., Spusta, S. C., Majumdar, S., Lanier, L. L., Lowell, C. A. and Nakamura, M. C. (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci .U.S.A. 101, 6158-6163. https://doi.org/10.1073/pnas.0401602101
  13. Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E. F., Mak, T. W., Serfling, E. and Takayanagi, H. (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269. https://doi.org/10.1084/jem.20051150
  14. Takayanagi, H. (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83, 170-179. https://doi.org/10.1007/s00109-004-0612-6
  15. Kim, K., Lee, S. H., Kim, J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  16. de Vries, T. J., Schoenmaker, T., Beertsen, W., van der Neut, R. and Everts, V. (2005) Effect of CD44 deficiency on in vitro and in vivo osteoclast formation. J. Cell. Biochem. 94, 954-966. https://doi.org/10.1002/jcb.20326
  17. Mbalaviele, G., Chen, H., Boyce, B. F., Mundy, G. R. and Yoneda, T. (1995) The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow. J. Clin. Invest. 95, 2757-2765. https://doi.org/10.1172/JCI117979
  18. Abe, E., Mocharla, H., Yamate, T., Taguchi, Y. and Manolagas, S. C. (1999) Meltrin-$\alpha$, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif. Tissue Int. 64, 508-515. https://doi.org/10.1007/s002239900641
  19. Lee, S. H., Rho, J., Jeong, D., Sul, J. Y., Kim, T., Kim, N., Kang, J. S., Miyamoto, T., Suda, T., Lee, S. K., Pignolo, R. J., Koczon-Jaremko, B., Lorenzo, J. and Choi, Y. (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409.
  20. Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., Oike, Y., Takeya, M., Toyama, Y. and Suda, T. (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
  21. Lee, M. S., Kim, H. S., Yeon, J. T., Choi, S. W., Chun, C. H., Kwak, H. B. and Oh, J. (2009) GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J. Immunol. 183, 3390-3399. https://doi.org/10.4049/jimmunol.0804314
  22. Takayanagi, H., Kim, S., Matsuo, K., Suzuki, H., Suzuki, T., Sato, K., Yokochi, T., Oda, H., Nakamura, K., Ida, N., Wagner, E. F. and Taniguchi, T. (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416, 744-749. https://doi.org/10.1038/416744a
  23. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., Nakamura, K. and Taniguchi, T. (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605. https://doi.org/10.1038/35046102
  24. Gao, Y., Grassi, F., Ryan, M. R., Terauchi, M., Page, K., Yang, X., Weitzmann, M. N. and Pacifici, R. (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J. Clin. Invest. 117, 122-132. https://doi.org/10.1172/JCI30074
  25. Sato, K., Suematsu, A., Okamoto, K., Yamaguchi, A., Morishita, Y., Kadono, Y., Tanaka, S., Kodama, T., Akira, S., Iwakura, Y., Cua, D. J. and Takayanagi, H. (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673-2682. https://doi.org/10.1084/jem.20061775
  26. Hartgers, F. C., Vissers, J. L., Looman, M. W., van Zoelen, C., Huffine, C., Figdor, C. G. and Adema, G. J. (2000) DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur. J. Immunol. 30, 3585-3590. https://doi.org/10.1002/1521-4141(200012)30:12<3585::AID-IMMU3585>3.0.CO;2-Y
  27. Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A. and Crabtree, G. R. (1998) Identification of a putative regulator of early T cell activation genes. Science 241, 202-205.
  28. Skurkovich, S. V. and Eremkina, E. I. (1975) The probable role of interferon in allergy. Ann. Allergy 35, 356-360.
  29. Hu, X. and Ivashkiv, L. B. (2009) Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31, 539-550. https://doi.org/10.1016/j.immuni.2009.09.002

Cited by

  1. Cryopreservation induces macrophage colony stimulating factor from human periodontal ligament cells in vitro vol.67, pp.2, 2013, https://doi.org/10.1016/j.cryobiol.2013.06.006
  2. The roles of interferons in osteoclasts and osteoclastogenesis vol.83, pp.3, 2016, https://doi.org/10.1016/j.jbspin.2015.07.010
  3. Human Osteoclasts Are Inducible Immunosuppressive Cells in Response to T cell-Derived IFN-γ and CD40 Ligand In Vitro vol.29, pp.12, 2014, https://doi.org/10.1002/jbmr.2294
  4. Rôles des interférons sur les ostéoclastes et l’ostéoclastogenèse vol.83, pp.5, 2016, https://doi.org/10.1016/j.rhum.2016.07.001
  5. Interferon Gamma, but not Calcitriol Improves the Osteopetrotic Phenotypes in ADO2 Mice vol.30, pp.11, 2015, https://doi.org/10.1002/jbmr.2545
  6. The osteoimmunology of alveolar bone loss vol.57, pp.2, 2016, https://doi.org/10.3109/03008207.2016.1140152
  7. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model vol.5, pp.1, 2015, https://doi.org/10.1038/srep13687
  8. Functions and mechanisms of intermittent negative pressure for osteogenesis in human bone marrow mesenchymal stem cells vol.9, pp.4, 2014, https://doi.org/10.3892/mmr.2014.1968
  9. Regulation of Osteoclast Differentiation by Cytokine Networks vol.18, pp.1, 2018, https://doi.org/10.4110/in.2018.18.e8
  10. Interferon-Gamma-Mediated Osteoimmunology vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01508