DOI QR코드

DOI QR Code

Default Bayesian testing on the common mean of several normal distributions

  • Kang, Sang-Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal-Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo-Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2012.04.13
  • Accepted : 2012.05.17
  • Published : 2012.05.31

Abstract

This article deals with the problem of testing on the common mean of several normal populations. We propose Bayesian hypothesis testing procedures for the common normal mean under the noninformative prior. The noninformative prior is usually improper and yields a calibration problem that makes the Bayes factor to be defined u to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Keywords

References

  1. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  2. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J.M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  3. Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
  4. erger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya B, 60, 1-18.
  5. Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 38, edited by P. Lahiri, Beachwood, Ohio, 135-207.
  6. Bhattacharya, C. G. (1980). Point and con dence estimation of a common mean and recovery of inter-block information. The Annals of Statistics, 2, 963-976.
  7. Brown, L. D. and Cohen, A. (1974). Estimation of a common mean and recovery of interblock information. The Annals of Statistics, 8, 205-211.
  8. Chang, C. H. and Pal, N. (2008). Testing on the common mean of several normal distributions. Computational Statistics and Data Analysis, 53, 321-333. https://doi.org/10.1016/j.csda.2008.07.024
  9. Cohen A. and Sackrowitz, H. B. (1974). On estimating of the common mean of two normal populations. The Annals of Statistics, 2, 1274-1282. https://doi.org/10.1214/aos/1176342878
  10. Cohen A. and Sackrowitz, H. B. (1989). Exact tests that recover interblock information in balanced incom- plete blocks designs. Journal of the American Statistical Association, 84, 556-560. https://doi.org/10.1080/01621459.1989.10478803
  11. Eberhardt, K. R., Reeve, C. P. and Spiegelman, C. H. (1989). A minimax approach to combining means, with practical examples. Chemometrics and Intelligent Laboratory Systems, 5, 129-148. https://doi.org/10.1016/0169-7439(89)80009-7
  12. Fairweather, W. R. (1972). A method of obtaining an exact con dence interval for the common mean of several normal populations. Applied Statistics, 21, 229-233. https://doi.org/10.2307/2346273
  13. Fisher, R. A. (1932). Statistical methods of research workers, Oliver & Boyd, London.
  14. Graybill, F. A. and Deal, R. B. (1959). Combining unbiased estimators. Biometrics, 15, 543-550. https://doi.org/10.2307/2527652
  15. Hartung, J., Knapp, G. and Sinha, B. K. (2008). Statistical meta-analysis with applications, Wiley, New York.
  16. Jordan, S. M. and Krishnamoorthy, K. (1996). Exact con dence intervals for the common mean of several normal populations. Biometrics, 52, 77-86. https://doi.org/10.2307/2533146
  17. Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Bayesian model selection for inverse Gaussian populations with heterogeneity. Journal of the Korean Data & Information Science Society, 19, 621-634.
  18. Kang, S. G., Kim, D. H. and Lee, W. D. (2011). Default Bayesian testing for the bivariate normal correlation coecient. Journal of the Korean Data & Information Science Society, 22, 1007-1016.
  19. Kharti, C. G. and Shah, K. R. (1974). Estimation of location parameters from two linear models under normality. Communications in Statistics: Theory and Methods, 3, 647-663. https://doi.org/10.1080/03610927408827165
  20. Krishnamoorthy, K. and Lu, Y. (2003). Inference on the common mean of several normal populations based on the generalized variable method. Biometrics, 59, 237-247. https://doi.org/10.1111/1541-0420.00030
  21. Kubokawa, T. (1990).Minimax estimation of common coecient of several regression models under quadratic loss. Journal of Statistical Planning and Inference, 24, 337-345. https://doi.org/10.1016/0378-3758(90)90052-V
  22. Lee, W. D. and Kang, S. G. (2008). Bayesian multiple hypotheses testing for Poisson mean. Journal of the Korean Data & Information Science Society, 19, 331-341.
  23. Lin, S. H. and Lee, J. C. (2005). Generalized inferences on the common mean of several normal populations. Journal of Statistical Planning and Inference, 134, 568-582. https://doi.org/10.1016/j.jspi.2004.02.018
  24. Meier, P. (1953). Variance of weighted mean. Biometrics, 9, 59-73. https://doi.org/10.2307/3001633
  25. Montgomery, D. C. (1991). Design and analysis of experiments, Wiley, New York.
  26. O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
  27. O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
  28. Shinozaki, N. (1978). A note on estimating the common mean of k normal distributions and the Stein problem. Communications in Statistics: Theory and Methods, 7, 1421-1432.
  29. Sinha, B. K. (1985). Unbiased estimation of the variance of the Graybill-Deal estimator of the common mean of several normal populations. Canadian Journal of Statistics, 13, 243-247. https://doi.org/10.2307/3315154
  30. Sinha, B. K. and Mouqadem, O. (1982). Estimation of the common mean of two univariate normal populations. Communications in Statistics: Theory and Methods, 11, 1603-1614. https://doi.org/10.1080/03610928208828334
  31. Snedecor, G. W. (1950). The statistical part of the scienti c method. Annals of the New York Academy of Science, 52, 742-749.
  32. Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
  33. Yu, P. L., Sun, Y. and Sinha, B. K. (1999). On exact con dence intervals for the common mean of several normal populations. Journal of Statistical Planning and Inference, 81, 263-277. https://doi.org/10.1016/S0378-3758(99)00052-X
  34. Zacks, S. (1966). Unbiased estimation of the common mean. Journal of the American Statistical Association, 61, 467-476. https://doi.org/10.1080/01621459.1966.10480882
  35. acks, S. (1970). Bayes and ducial equivariant estimators of the common means of two populations. The Annals of Mathematical Statistics, 41, 59-69. https://doi.org/10.1214/aoms/1177697188
  36. Zhou, L. and Mathew, T. (1993). Combining independent tests in linear models. Journal of the American Statistical Association, 88, 650-655. https://doi.org/10.1080/01621459.1993.10476318

Cited by

  1. Default Bayesian hypothesis testing for the scale parameters in the half logistic distributions vol.25, pp.2, 2014, https://doi.org/10.7465/jkdi.2014.25.2.465
  2. Default Bayesian testing for the scale parameters in two parameter exponential distributions vol.24, pp.4, 2013, https://doi.org/10.7465/jkdi.2013.24.4.949
  3. Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1569