DOI QR코드

DOI QR Code

생체 외 조건의 소 대퇴골 해면질골에서 음향특성과 골밀도 사이의 상관관계

Correlations between Acoustic Properties and Bone Mineral Density in Bovine Femoral Trabecular Bone In Vitro

  • 투고 : 2012.02.02
  • 심사 : 2012.03.13
  • 발행 : 2012.05.31

초록

본 연구의 목적은 골절 위험도가 높은 대퇴골에서 음속 및 광대역 초음파 감쇠와 같은 음향특성과 골밀도 사이의 상관관계를 조사하는 것이다. 이를 위해 0.5 및 1.0 MHz의 중심주파수를 갖는 두 쌍의 초음파 트랜스듀서와 함께 투과법을 이용하여 생체 외 조건에서 15개의 소 대퇴골 해면질골 샘플의 음속 및 광대역 초음파 감쇠를 측정하였다. 또한 마이크로 컴퓨터 단층촬영법을 이용하여 해면질골 샘플의 단위체적당 골밀도를 측정하였다. 골밀도는 0.5 및 1.0 MHz 초음파 트랜스듀서를 이용하여 측정된 음속 및 광대역 초음파 감쇠와 모두 강한 상관관계를 나타냈으며, 골밀도와 0.5 MHz 초음파 트랜스듀서를 이용하여 측정된 광대역 초음파 감쇠 사이에 가장 높은 상관관계가 존재하였다. 이와 같은 결과는 생체 외 조건의 대퇴골에서 측정된 음향특성이 대퇴골의 골밀도를 예측하기에 충분한 지표라는 것을 의미한다.

The purpose of the present study is to investigate the correlations between acoustic properties, such as speed of sound and normalized broadband ultrasound attenuation, and bone mineral density in femur with high fracture risk. The speed of sound and the normalized broadband ultrasound attenuation in 15 bovine femoral trabecular bone samples in vitro were measured by using a through-transmission method with two matched pairs of ultrasonic transducers with center frequencies of 0.5 and 1.0 MHz. The volumetric bone mineral density of the trabecular bone samples was measured by using micro-computed tomography. The bone mineral density exhibited strong correlations with both the speed of sound and the normalized broadband ultrasound attenuation measured by using the 0.5 and the 1.0 MHz transducers. The highest correlation was found between the bone mineral density and the normalized broadband ultrasound attenuation measured by using the 0.5 MHz ultrasonic transducers. The results suggest that the acoustic properties measured in the femur in vitro can be used as indices for the prediction of femoral bone mineral density.

키워드

참고문헌

  1. K. I. Lee and S. W. Yoon, "Ultrasonic diagnosis of osteoporosis," J. Acoust. Soc. Kor., vol. 29, no. 2E, pp. 64-72, 2010.
  2. C. M. Langton, S. B. Palmer, and R. W. Porter, "The measurement of broadband ultrasonic attenuation in cancellous bone," Eng. Med., vol. 13, no. 2, pp. 89-91, 1984. https://doi.org/10.1243/EMED_JOUR_1984_013_022_02
  3. 김기수, 골다공증 3판, 한미의학, 서울, 2006, 15-16쪽.
  4. 이강일, 최민주, "골다공증 여성에서 요추골 및 대퇴골 부위의 골밀도와 종골 음속 사이의 상관관계," 한국음향학회지, 28권, 6호, 542-547쪽, 2009.
  5. 김성일, 이강일, "해면질골 팬텀으로서 개포된 구조를 갖는 구리폼 및 니켈폼에서 구조적 특성에 대한 군속도 및 감쇠계수의 의존성," 한국음향학회지, 30권, 3호, 158-166쪽, 2011. https://doi.org/10.7776/ASK.2011.30.3.158
  6. F. Jenson, F. Padilla, V. Bousson, C. Bergot, J-D. Laredo, and P. Laugier, "In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: Relationships to bone mineral density," J. Acoust. Soc. Am., vol. 119, no. 1, pp. 654-663, 2006. https://doi.org/10.1121/1.2126936
  7. M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range," J. Acoust. Soc. Am., vol. 28, no. 2, pp. 179-191, 1956. https://doi.org/10.1121/1.1908241
  8. A. Hosokawa and T. Otani, "Ultrasonic wave propagation in bovine cancellous bone," J. Acoust. Soc. Am., vol. 101, no. 1, pp. 558-562, 1997. https://doi.org/10.1121/1.418118
  9. K. A. Wear and D. W. Armstrong III, "Relationships among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women," J. Acoust. Soc. Am., vol. 110, no. 1, pp. 573-578, 2001. https://doi.org/10.1121/1.1378343
  10. C. C. Anderson, K. R. Marutyan, M. R. Holland, K. A. Wear, and J. G. Miller, "Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone," J. Acoust. Soc. Am., vol. 124, no. 3, pp. 1781-1789, 2008. https://doi.org/10.1121/1.2953309
  11. K. A. Wear, "A stratified model to predict dispersion in trabecular bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 4, pp. 1079-1083, 2001. https://doi.org/10.1109/58.935726
  12. K. R. Waters and B. K. Hoffmeister, "Kramers-Kronig analysis of attenuation and dispersion in trabecular bone," J. Acoust. Soc. Am., vol. 118, no. 6, pp. 3912-3920, 2005. https://doi.org/10.1121/1.2126934
  13. F. J. Fry and J. E. Barger, "Acoustical properties of the human skull," J. Acoust. Soc. Am., vol. 63, no. 5, pp. 1576-1590, 1978. https://doi.org/10.1121/1.381852
  14. S. Pal, S. Saha, and G. N. Reddy, "Frequency dependence of ultrasonic characteristics of cancellous bone," in Biomedical Engineering, Pergamon, London, UK, 1982.
  15. P. Droin, G. Berger, and P. Laugier, "Velocity dispersion of acoustic waves in cancellous bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp. 581-592, 1998. https://doi.org/10.1109/58.677603
  16. S. Chaffai, F. Padilla, G. Berger, and P. Laugier, "In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz," J. Acoust. Soc. Am., vol. 108, no. 3, pp. 1281-1289, 2000. https://doi.org/10.1121/1.1288934
  17. K. A. Wear, "Ultrasonic scattering from cancellous bone: A review," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 7, pp. 1432-1441, 2008. https://doi.org/10.1109/TUFFC.2008.818
  18. D. D. Deligianni and K. N. Apostolopoulos, "Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models," J. Acoust. Soc. Am., vol. 122, no. 2, pp. 1180-1190, 2007. https://doi.org/10.1121/1.2749461

피인용 문헌

  1. Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro vol.32, pp.2, 2013, https://doi.org/10.7776/ASK.2013.32.2.181