Effect of Ochnaflavone as An Immunoadjuvant

Ochnaflavone의 면역보조제 효과

  • Park, Minjoo (ImmunoMicrobiology Lab, College of Pharmacy, Dongduk Women's University) ;
  • Rhew, Ki Yon (ImmunoMicrobiology Lab, College of Pharmacy, Dongduk Women's University) ;
  • Han, Yongmoon (ImmunoMicrobiology Lab, College of Pharmacy, Dongduk Women's University)
  • 박민주 (동덕여자대학교 약학대학 면역미생물학 실험실) ;
  • 유기연 (동덕여자대학교 약학대학 면역미생물학 실험실) ;
  • 한용문 (동덕여자대학교 약학대학 면역미생물학 실험실)
  • Received : 2012.09.21
  • Accepted : 2012.09.30
  • Published : 2012.12.31

Abstract

In this present study, we determined whether or not there is an immunoadjuvant effect of ochnaflavone, a biflavone isolated from Lonicera japonica. As an antigenic source, the cell wall (CACW) of Candida albicans, a fungal pathogen, was used. CACW consists of 95% carbohydrate (mannan). In the experiments, BALB/c mice were immunized with emersion forms of CACW combined with or without ochnaflavone (Och) in the presence of IFA containing mineral oil or CACW alone. Then, the amounts of antisera collected from these mice groups were measured by the ELISA method. Data from these experiments showed that CACW combined with Och (CACW/Och/IFA) provoked the production of antisera app. 2.2 or 5 times more than the corresponding CACW/IFA or CACW alone (CACW/DPBS), respectively, in mice (P<0.05). We further examined the immune response type induced by Och. Analysis of the values of the IgG1/IgG2a ratios obtained from IgG isotyping revealed that Och induced Th2-immunity more dominantly than Th1. This finding was confirmed by cytokine profile. CACW/Och/IFA formulation induced IL-4 (Th2-type cytokine) more than IFN${\gamma}$ (Th1-type cytokine) as compared with CACW/IFA and CACW/DPBS formulations (P<0.05). All data combined, Och appears to have an immunoadjuvant activity that may convert Th1 immunity into Th2 immunity.

Keywords

References

  1. Lavigne, L. M., Schopf, L. R., Chung, C. L., Maylor, R. and Sypek, J. P. : The role of recombinant murine IL-12 and INF- $\gamma$ in the pathogenesis of murine systemic Candida albicans infection. J. Immunol. 160, 284 (1998).
  2. Herzyk, D. J., Gore, E. R., Polsky, R., Nadwodny, K. L, Maier, C. C., Liu, S., Hart, T. K., Harmsen, A. and Bugelski, P. J. : Immunomodulatory effects of anti-CD4 antibody in host resistance against infections and tumors in human CD4 transgenic mice. Infect. Immun. 69, 1032 (2001). https://doi.org/10.1128/IAI.69.2.1032-1043.2001
  3. MacLeod, M. K., McKee, A., Crawford, F., White, J., Kappler. J. and Marrack, P. : CD4 memory T cells divide poorly in response to antigen because of their cytokine profile. Proc. Natl. Acad Sci. (USA) 23, 14521 (2008).
  4. Weaver, C. T., Hatton, R. D., Mangan, P. R. and Harrington and L. E. : IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev. Immunol. 25, 821 (2007). https://doi.org/10.1146/annurev.immunol.25.022106.141557
  5. Corthay, A. : A three-cell model for activation of naive T helper cells. Scand J. Immunol. 64, 93 (2006). https://doi.org/10.1111/j.1365-3083.2006.01782.x
  6. Lee, J. H., Lee, J. Y., Park, J. H., Jung, H. S., Kim, J. S., Kang, S. S., Kim, Y. S. and Han, Y. : Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine. 25, 3834 (2007). https://doi.org/10.1016/j.vaccine.2007.01.108
  7. Lee, J. H., Park, J. H., Kim, Y. S. and Han, Y. : Chlorogenic acid, a polyphenolic compound, treats mice with septic arthritis caused by Candida albicans. Int. Immunopharmacol. 8, 1681 (2008). https://doi.org/10.1016/j.intimp.2008.08.002
  8. Han, Y. : Rutin has therapeutic effect on septic arthritis caused by Candida albicans. Int. Immunopharmacol. 9, 207 (2009). https://doi.org/10.1016/j.intimp.2008.11.002
  9. Han, Y. : Effect of 18$\beta$-glycyrrhetinic acid on septic arthritis caused by Candida albicans. Yakhak Hoeji 51, 325 (2007).
  10. Han, Y. : 18$\beta$-glycyrrhetinic acid induces protective anti- Candida albicans antibody by its immunoadjuvant activity. Yakhak Hoeji 52, 494 (2007).
  11. Lee, J. H. : Involvement of T-cell immunoregulation by ochnaflavone in therapeutic effect on fungal arthritis due to Candida albicans. Arch. Pharm. Res. 34, 1209 (2011). https://doi.org/10.1007/s12272-011-0720-0
  12. Son, M. J., Moon, T. C., Lee, E. K., Son, K. H., Kim, H .P., Kang, S. S., Son, J. K., Lee, S. H. and Chang, H. W. : Naturally occuring biflavonoid, ochnaflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch. Pharm. Res. 29, 282 (2006). https://doi.org/10.1007/BF02968571
  13. Chang, H. W., Baek, S .H., Chung, K. W., Son, K .H., Kim, H. P. and Kang, S. S. : Inactivation of phospholipase A2 by naturally occuring biflavonoid, ochnaflavone. Biochem. Biophys. Res. Commun. 205, 843 (1994). https://doi.org/10.1006/bbrc.1994.2741
  14. Oliveira, M. C., de Carvalho, M. G., Grynberg, N. F. and Brioso, P. S. : A biflavonoid from Luxemburgia nobilis as inhibitor of DNA Topoisomerases. Planta Med. 71, 561 (2005). https://doi.org/10.1055/s-2005-864159
  15. Lee, S. J., Choi, J. H., Son, K. H., Chang, H. W., Kang, S. S. and Kim, H. P. : Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci. 57, 51 (1995).
  16. Beretz, A., Joly, M., Stoclet, J. C. and Anton, R. : Inhibition of 3',5'-AMP phosphodiesterase by biflavonoids and xanthones. Planta Med. 36, 193 (1979). https://doi.org/10.1055/s-0028-1097268
  17. Iwu, M. M., Igboko, O. A., Okunji, C. O. and Tempesta, M. S. : Antidiabetic and aldose reductase activities of biflavonones of Garcinia kola. J. Pharm. Pharmacol. 42, 290 (1990). https://doi.org/10.1111/j.2042-7158.1990.tb05412.x
  18. Lin, Y. M., Chen, F. C. and Lee, K. H. : Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. Planta Med. 55, 166 (1989). https://doi.org/10.1055/s-2006-961914
  19. Beck-Sague, C. and Jarvis, W. R. : Secular trends in the epidemiology of nosocomial fungal infections in the united states, 1960-1990, national nosocomial infections surveillance system. J. Infect. Dis. 167, 1247 (1993). https://doi.org/10.1093/infdis/167.5.1247
  20. Miller, L. G., Hajjeh, R. A. and Edwards, J. E. : Estimating the cost of nosocomial candidemia in the united states. Clin. Infect. Dis. 32, 1110 (2001).
  21. Han, Y., Morrison, R. P. and Cutler, J. E. : A vaccine and monoclonal antibodies that enhance mouse resistance to Candida albicans vaginal infection. Infect. Immun. 66, 5771 (1998).
  22. Han, Y., Kozel, T. R., Zhang, M. X., MacGill, R. S., Carroll, M. C. and Cutler, J. E. : Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J Immunol. 167, 1550 (2001). https://doi.org/10.4049/jimmunol.167.3.1550
  23. Han, Y. and Cutler, J. E. : Antibody response that protects against disseminated candidiasis. Infect. Immun. 63, 2714 (1995).
  24. Han, Y., van Rooijen, N., Cutler, J. E. : Binding of Candida albicans yeast cells to mouse politeal lymph node is mediated by macrophages. Infect. Immun. 61, 3244 (1993).
  25. Pengo, V., Biasiolo, A., Pegoraro, C., Cucchini, U., Noventa, F. and Iliceto, S. : Antibody profiles for the diagnosis of antiphospholipid syndrome. Thromb. Haemost. 93, 1147 (2005).
  26. Endo, T., Sato, N., Koizumi, K., Nishio, M., Fujimoto, K., Yamamoto, S., Sakai, T., Bohgaki, T., Sawada, K. and Koike, T. : A preliminary analysis of the balance between Th1 and Th2 cells after CD34+cell-selected autologous PBSC transplantation. Cytotherapy 6, 337 (2004). https://doi.org/10.1080/14653240410004907
  27. Guy, B. and Burdin, N. : New adjuvants for parenteral and mucosal vaccines. Therapie. 60, 235 (Review) (2005). https://doi.org/10.2515/therapie:2005030
  28. Mosmann, T. R. and Coffman, R. L. : Th1 and Th2 cells: Different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol. 7, 145 (1989). https://doi.org/10.1146/annurev.iy.07.040189.001045
  29. Maiti, P. K., Feferman, T., Im, S. H., Souroujon, M. C. and Fuchs, S. : Immunosuppression of rat myasthenia gravis by oral administration of a syngeneic acetylcholine receptor fragment. J. Neuroimmunology 152, 112 (2004). https://doi.org/10.1016/j.jneuroim.2004.04.010
  30. Im, S. H., Barchan, D., Fuchs, S. and Souroujon, M. C. : Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J. Clin. Invest. 104, 1723 (1999). https://doi.org/10.1172/JCI8121
  31. Endo, T., Sato, N., Koizumi, K., Nishio, M., Fujimoto, K., Yamamoto, S., Sakai, T., Bohgaki, T., Sawada, K. and Koike, T. : A preliminary analysis of the balance between Th1 and Th2 cells after CD34+ cell-selected autologous PBSC transplantation. Cytotherapy. 6, 337 (2004). https://doi.org/10.1080/14653240410004907
  32. Guy, B. and Burdin, N. : New adjuvants for parenteral and mucosal vaccines. Therapie. 60, 235 (Review) (2005). https://doi.org/10.2515/therapie:2005030