DOI QR코드

DOI QR Code

Theoretical Study on the Mechanism of the Addition Reaction between Cyclopropenylidene and Formaldehyde

  • Tan, Xiaojun (College of Medical and Life Science, University of Jinan) ;
  • Li, Zhen (Australian Institute for Bioengineering and Nanotechnology, The University of Queensland) ;
  • Sun, Qiao (Australian Institute for Bioengineering and Nanotechnology, The University of Queensland) ;
  • Li, Ping (School of Chemistry and Chemical Engineering, Qufu Normal University) ;
  • Wang, Weihua (School of Chemistry and Chemical Engineering, Qufu Normal University)
  • Received : 2011.12.22
  • Accepted : 2012.03.14
  • Published : 2012.06.20

Abstract

The reaction mechanism between cyclopropenylidene and formaldehyde has been systematically investigated employing the MP2/6-311+$G^*$ level of theory to better understand the cyclopropenylidene reactivity with carbonyl compound. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are further corrected by the CCSD(T)/6-311+$G^*$ single-point calculations. It was found that one important reaction intermediate (INTa) has been located firstly $via$ a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed $via$ TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two possible reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), it is the formation of the four-membered ring conjugated diene compound. The energy barrier of the ratedetermining step of pathway (1) is lower than that of the pathway (2), and the ultima product of pathway (2) is more stable than that of the pathway (1).

Keywords

References

  1. Mitani, M.; Kobanashi, Y.; Koyama, K. J. Chem. Soc., Perkin Trans I 1995, 653.
  2. Garcia, M.; Campo, C. D.; Llama, E. F. Tetrahedron Lett. 1993, 49, 8433. https://doi.org/10.1016/S0040-4020(01)81926-8
  3. Garcia, M.; Campo, C. D.; Llama, E. F. J. Chem. Soc., Perkin Trans I 1995, 1771.
  4. Kostikov, R. R.; Khlebnikov, A. F.; Bespalov, V. Y. J. Phys. Org. Chem. 1993, 6, 83. https://doi.org/10.1002/poc.610060203
  5. Wang, Y.; Li, H. Acta Phys-Chim. Sin. 2004, 20, 1339.
  6. Stang, P. J. J. Am. Chem. Res. 1982, 15, 348. https://doi.org/10.1021/ar00083a002
  7. Lu, X. H.; Wang, Y. X. J. Phys. Chem. A 2003, 107, 7885. https://doi.org/10.1021/jp034991p
  8. Lu, X. H.; Wang, Y. X. J. Mole. Struct. (THEOCHEM) 2004, 686, 207. https://doi.org/10.1016/j.theochem.2004.09.002
  9. Apeloig, Y.; Karni, M.; Stang, P. J. J. Am. Chem. Soc. 1983, 105, 4781. https://doi.org/10.1021/ja00352a042
  10. Fox, D. P.; Stang, P. J.; Apeloig, Y.; Karni, M. J. Am. Chem. Soc. 1986, 108, 750. https://doi.org/10.1021/ja00264a029
  11. Tan, X. J.; Li, P.; Wang, W. H.; Zheng, G. X.; Yang, X. L. Struct. Chem. 2009, 20, 671. https://doi.org/10.1007/s11224-009-9459-3
  12. Tan, X. J.; Li, P.; Wang, W. H.; Zheng, G. X.; Wang, Q. F. J. Serb. Chem. Soc. 2010, 75, 649. https://doi.org/10.2298/JSC090303031T
  13. Herges, R.; Mebel, A. J. Am. Chem. Soc. 1994, 116, 8229. https://doi.org/10.1021/ja00097a032
  14. Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Hess, B. A.; Schaad, L. J. J. Am. Chem. Soc. 1987, 109, 5183. https://doi.org/10.1021/ja00251a023
  15. Seburg, R. A.; DePinto, J. T.; Patterson, E. V.; McMahon, R. J. J. Am. Chem. Soc. 1995, 117, 835. https://doi.org/10.1021/ja00107a035
  16. MacAllister, T.; Nicholson, A. J. Chem. Soc., Faraday Trans. 1981, 77, 821. https://doi.org/10.1039/f19817700821
  17. Seburg, R. A.; MacMahon, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2009. https://doi.org/10.1002/anie.199520091
  18. Seburg, R. A.; Patterson, E. V.; Stanton, J. F.; McMahon, R. J. J. Am. Chem. Soc. 1997, 119, 5847. https://doi.org/10.1021/ja9638869
  19. Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Spirko, V.; Hess, B. A.; Schaad, L. J. J. Chem. Phys. 1989, 91, 4763. https://doi.org/10.1063/1.456765
  20. Juana, V.; Michael, E. H.; Jurgen, G.; John, F. S. J. Phys. Chem. A 2009, 113, 12447. https://doi.org/10.1021/jp9029908
  21. Taatjes, C. A.; Klippenstein, S. J.; Hansen, N.; Miller, J. A.; Cool, T. A.; Wang, J.; Law, M. E.; Westmoreland, P. R. Phys. Chem. Chem. Phys. 2005, 7, 806. https://doi.org/10.1039/b417160h
  22. Lau, K. C.; Ng, C. Y. Chin. J. Chem. Phys. 2006, 19, 29. https://doi.org/10.1360/cjcp2006.19(1).29.10
  23. Gleiter, R.; Hoffmann, R. J. Am. Chem. Soc. 1968, 90, 5457. https://doi.org/10.1021/ja01022a023
  24. Shepard, R.; Banerjee, A.; Simons, J. J. Am. Chem. Soc. 1979, 101, 6174. https://doi.org/10.1021/ja00515a004
  25. Lee, T. J.; Bunge, A.; Schaefer, H. F. J. Am. Chem. Soc. 1985, 107, 137. https://doi.org/10.1021/ja00287a025
  26. Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900. https://doi.org/10.1063/1.467306
  27. Hehre, W. J.; Pople, J. A.; Lathan, W. A.; Radom, L.; Wasserman, E.; Wasserman, Z. R. J. Am. Chem. Soc. 1976, 98, 4378. https://doi.org/10.1021/ja00431a005
  28. Jonas, V.; Bohme, M.; Frenking, G. J. Phys. Chem. 1992, 96, 1640.
  29. Takahashi, J.; Yamashita, K. J. Chem. Phys. 1996, 104, 6613. https://doi.org/10.1063/1.471380
  30. Fan, Q.; Pfeiffer, G. V. Chem. Phys. Lett. 1989, 162, 472. https://doi.org/10.1016/0009-2614(89)87010-1
  31. Walch, S. P. J. Chem. Phys. 1995, 103, 7064. https://doi.org/10.1063/1.470334
  32. Kirmse, W. Carbene Chemistry, 2nd ed.; Academic Press: New York, 1971.
  33. Jones, M.; Moss, R. A. Carbenes Wiley: New York, 1973.
  34. Herbst, E. Angew. Chem. Int. Ed. Engl. 1990, 29, 595. https://doi.org/10.1002/anie.199005951
  35. Herbst, E.; Leung, L. M. Astrophys. J. Suppl. Ser. 1989, 69, 271. https://doi.org/10.1086/191314
  36. Winnewisser, G. Top Curr. Chem. 1981, 99, 39. https://doi.org/10.1007/3-540-10920-X_14
  37. Hayatsu, R.; Anders, E. Top Curr. Chem. 1981, 99, 1. https://doi.org/10.1007/3-540-10920-X_13
  38. Thaddeus, P.; Gottlieb, C. A.; Mollaaghababa, R.; Vrtilek, J. M. J. Chem. Soc. Faraday Trans. 1993, 89, 2125. https://doi.org/10.1039/ft9938902125
  39. Goulay, F.; Adam, J. T.; Meloni, G.; Talitha, M. S.; David, L. O.; Craig, A. T.; Luc, V.; Stephen, R. L. J. Am. Chem. Soc. 2009, 131, 993. https://doi.org/10.1021/ja804200v
  40. Patrick, H.; Juliane, K.; Ingo, F.; Giovanni, P.; Lionel, P.; Jean- Michel, M. Phys. Chem. Chem. Phys. 2011, PMID 22173743.
  41. Chotima, R.; Dale, T.; Green, M.; Hey, T. W.; McMullin, C. L.; Nunns, A.; Orpen, A. G.; Shishkov, I. V.; Wass, D. F.; Wingad, R. L. Dalton Trans. 2011, 40, 5316. https://doi.org/10.1039/c1dt10109a
  42. Duncan, F. W.; Mairi, F. H.; Thomas, W. H.; Guy, O.; Christopher, R.; Richard, L. W.; Michael, G. Chem. Commun. 2007, 26, 2704.
  43. Vincent, L.; Yves, C.; Bruno, D.; Wolfgang, W. S.; Guy, B. Science 2006, 312, 722. https://doi.org/10.1126/science.1126675
  44. Pradeep, R.; Varadwaj, R. F.; Kentarou, K. J. Phys. Chem. A 2011, 115, 8458. https://doi.org/10.1021/jp204068w
  45. Frisch, M. J. et al., Gaussian 98, Gaussian Inc.: Pittsburgh, PA, 1998.

Cited by

  1. A computational study of the addition reaction of cyclopropenylidene with methyleneimine vol.87, pp.5, 2013, https://doi.org/10.1134/S0036024413050336
  2. Theoretical study on the reaction mechanism of cyclopropenylidene with azacyclopropane: ring expansion process vol.145, pp.7, 2014, https://doi.org/10.1007/s00706-014-1174-0
  3. Theoretical insights into the reaction between vinylidenesilanediyl and double bond compounds (formaldehyde and methyleneimine): the formation of heterocyclic silylene and spiro-Si-heterocyclic compou vol.195, pp.7, 2012, https://doi.org/10.1080/10426507.2020.1737065
  4. Correlation between bonding, philicity and substituent effects in cyclopropenylidenes vol.1205, pp.None, 2012, https://doi.org/10.1016/j.comptc.2021.113437