References
- Mitani, M.; Kobanashi, Y.; Koyama, K. J. Chem. Soc., Perkin Trans I 1995, 653.
- Garcia, M.; Campo, C. D.; Llama, E. F. Tetrahedron Lett. 1993, 49, 8433. https://doi.org/10.1016/S0040-4020(01)81926-8
- Garcia, M.; Campo, C. D.; Llama, E. F. J. Chem. Soc., Perkin Trans I 1995, 1771.
- Kostikov, R. R.; Khlebnikov, A. F.; Bespalov, V. Y. J. Phys. Org. Chem. 1993, 6, 83. https://doi.org/10.1002/poc.610060203
- Wang, Y.; Li, H. Acta Phys-Chim. Sin. 2004, 20, 1339.
- Stang, P. J. J. Am. Chem. Res. 1982, 15, 348. https://doi.org/10.1021/ar00083a002
- Lu, X. H.; Wang, Y. X. J. Phys. Chem. A 2003, 107, 7885. https://doi.org/10.1021/jp034991p
- Lu, X. H.; Wang, Y. X. J. Mole. Struct. (THEOCHEM) 2004, 686, 207. https://doi.org/10.1016/j.theochem.2004.09.002
- Apeloig, Y.; Karni, M.; Stang, P. J. J. Am. Chem. Soc. 1983, 105, 4781. https://doi.org/10.1021/ja00352a042
- Fox, D. P.; Stang, P. J.; Apeloig, Y.; Karni, M. J. Am. Chem. Soc. 1986, 108, 750. https://doi.org/10.1021/ja00264a029
- Tan, X. J.; Li, P.; Wang, W. H.; Zheng, G. X.; Yang, X. L. Struct. Chem. 2009, 20, 671. https://doi.org/10.1007/s11224-009-9459-3
- Tan, X. J.; Li, P.; Wang, W. H.; Zheng, G. X.; Wang, Q. F. J. Serb. Chem. Soc. 2010, 75, 649. https://doi.org/10.2298/JSC090303031T
- Herges, R.; Mebel, A. J. Am. Chem. Soc. 1994, 116, 8229. https://doi.org/10.1021/ja00097a032
- Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Hess, B. A.; Schaad, L. J. J. Am. Chem. Soc. 1987, 109, 5183. https://doi.org/10.1021/ja00251a023
- Seburg, R. A.; DePinto, J. T.; Patterson, E. V.; McMahon, R. J. J. Am. Chem. Soc. 1995, 117, 835. https://doi.org/10.1021/ja00107a035
- MacAllister, T.; Nicholson, A. J. Chem. Soc., Faraday Trans. 1981, 77, 821. https://doi.org/10.1039/f19817700821
- Seburg, R. A.; MacMahon, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2009. https://doi.org/10.1002/anie.199520091
- Seburg, R. A.; Patterson, E. V.; Stanton, J. F.; McMahon, R. J. J. Am. Chem. Soc. 1997, 119, 5847. https://doi.org/10.1021/ja9638869
- Maier, G.; Reisenauer, H. P.; Schwab, W.; Carsky, P.; Spirko, V.; Hess, B. A.; Schaad, L. J. J. Chem. Phys. 1989, 91, 4763. https://doi.org/10.1063/1.456765
- Juana, V.; Michael, E. H.; Jurgen, G.; John, F. S. J. Phys. Chem. A 2009, 113, 12447. https://doi.org/10.1021/jp9029908
- Taatjes, C. A.; Klippenstein, S. J.; Hansen, N.; Miller, J. A.; Cool, T. A.; Wang, J.; Law, M. E.; Westmoreland, P. R. Phys. Chem. Chem. Phys. 2005, 7, 806. https://doi.org/10.1039/b417160h
- Lau, K. C.; Ng, C. Y. Chin. J. Chem. Phys. 2006, 19, 29. https://doi.org/10.1360/cjcp2006.19(1).29.10
- Gleiter, R.; Hoffmann, R. J. Am. Chem. Soc. 1968, 90, 5457. https://doi.org/10.1021/ja01022a023
- Shepard, R.; Banerjee, A.; Simons, J. J. Am. Chem. Soc. 1979, 101, 6174. https://doi.org/10.1021/ja00515a004
- Lee, T. J.; Bunge, A.; Schaefer, H. F. J. Am. Chem. Soc. 1985, 107, 137. https://doi.org/10.1021/ja00287a025
- Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900. https://doi.org/10.1063/1.467306
- Hehre, W. J.; Pople, J. A.; Lathan, W. A.; Radom, L.; Wasserman, E.; Wasserman, Z. R. J. Am. Chem. Soc. 1976, 98, 4378. https://doi.org/10.1021/ja00431a005
- Jonas, V.; Bohme, M.; Frenking, G. J. Phys. Chem. 1992, 96, 1640.
- Takahashi, J.; Yamashita, K. J. Chem. Phys. 1996, 104, 6613. https://doi.org/10.1063/1.471380
- Fan, Q.; Pfeiffer, G. V. Chem. Phys. Lett. 1989, 162, 472. https://doi.org/10.1016/0009-2614(89)87010-1
- Walch, S. P. J. Chem. Phys. 1995, 103, 7064. https://doi.org/10.1063/1.470334
- Kirmse, W. Carbene Chemistry, 2nd ed.; Academic Press: New York, 1971.
- Jones, M.; Moss, R. A. Carbenes Wiley: New York, 1973.
- Herbst, E. Angew. Chem. Int. Ed. Engl. 1990, 29, 595. https://doi.org/10.1002/anie.199005951
- Herbst, E.; Leung, L. M. Astrophys. J. Suppl. Ser. 1989, 69, 271. https://doi.org/10.1086/191314
- Winnewisser, G. Top Curr. Chem. 1981, 99, 39. https://doi.org/10.1007/3-540-10920-X_14
- Hayatsu, R.; Anders, E. Top Curr. Chem. 1981, 99, 1. https://doi.org/10.1007/3-540-10920-X_13
- Thaddeus, P.; Gottlieb, C. A.; Mollaaghababa, R.; Vrtilek, J. M. J. Chem. Soc. Faraday Trans. 1993, 89, 2125. https://doi.org/10.1039/ft9938902125
- Goulay, F.; Adam, J. T.; Meloni, G.; Talitha, M. S.; David, L. O.; Craig, A. T.; Luc, V.; Stephen, R. L. J. Am. Chem. Soc. 2009, 131, 993. https://doi.org/10.1021/ja804200v
- Patrick, H.; Juliane, K.; Ingo, F.; Giovanni, P.; Lionel, P.; Jean- Michel, M. Phys. Chem. Chem. Phys. 2011, PMID 22173743.
- Chotima, R.; Dale, T.; Green, M.; Hey, T. W.; McMullin, C. L.; Nunns, A.; Orpen, A. G.; Shishkov, I. V.; Wass, D. F.; Wingad, R. L. Dalton Trans. 2011, 40, 5316. https://doi.org/10.1039/c1dt10109a
- Duncan, F. W.; Mairi, F. H.; Thomas, W. H.; Guy, O.; Christopher, R.; Richard, L. W.; Michael, G. Chem. Commun. 2007, 26, 2704.
- Vincent, L.; Yves, C.; Bruno, D.; Wolfgang, W. S.; Guy, B. Science 2006, 312, 722. https://doi.org/10.1126/science.1126675
- Pradeep, R.; Varadwaj, R. F.; Kentarou, K. J. Phys. Chem. A 2011, 115, 8458. https://doi.org/10.1021/jp204068w
- Frisch, M. J. et al., Gaussian 98, Gaussian Inc.: Pittsburgh, PA, 1998.
Cited by
- A computational study of the addition reaction of cyclopropenylidene with methyleneimine vol.87, pp.5, 2013, https://doi.org/10.1134/S0036024413050336
- Theoretical study on the reaction mechanism of cyclopropenylidene with azacyclopropane: ring expansion process vol.145, pp.7, 2014, https://doi.org/10.1007/s00706-014-1174-0
- Theoretical insights into the reaction between vinylidenesilanediyl and double bond compounds (formaldehyde and methyleneimine): the formation of heterocyclic silylene and spiro-Si-heterocyclic compou vol.195, pp.7, 2012, https://doi.org/10.1080/10426507.2020.1737065
- Correlation between bonding, philicity and substituent effects in cyclopropenylidenes vol.1205, pp.None, 2012, https://doi.org/10.1016/j.comptc.2021.113437