DOI QR코드

DOI QR Code

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data

정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화

  • Kim, Somyoung (Global Environment System Research Lab., National Institute of Meteorological Research) ;
  • Park, Jeong-Hyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Ou, Mi-Lim (Global Environment System Research Lab., National Institute of Meteorological Research) ;
  • Cho, Heeje (School of Earth and Environmental Sciences, Seoul National University) ;
  • Sohn, Eun-Ha (Satellite Analysis Division, National Meteorological Satellite Center)
  • 김소명 (국립기상연구소 지구환경시스템연구과) ;
  • 박정현 (서울대학교 지구환경과학부) ;
  • 오미림 (국립기상연구소 지구환경시스템연구과) ;
  • 조희제 (서울대학교 지구환경과학부) ;
  • 손은하 (국가기상위성센터 위성분석과)
  • Received : 2011.09.02
  • Accepted : 2011.12.21
  • Published : 2012.03.31

Abstract

The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.

Keywords

References

  1. Bedka, K. M. and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. Appl. Meteor., 44, 1761-1772. https://doi.org/10.1175/JAM2264.1
  2. Borde, R., G. Dew, A. De Smet, and J. B. Gustaffson, 2010: Improvements to EUMETSAT AMVs. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
  3. Carranza M., De Smet, A., Gustafsson, J., 2010: Atmospheric motion vectors derived from MSG rapid scanning service data at EUMETSAT. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
  4. EUMETSAT, 2009: MSG Meteorological products extraction facility algorithm specification documents., v5.
  5. Forsythe, M. and Saunders, R., 2008: AMV monitoring: results from the 3rd NWP SAF analysis, Proc. 9th Int. Winds Workshop, Annapolis, Maryland, USA, EUM 51, ISSN 1023-0416.
  6. Fritz, S. and J. S. Winston, 1962: Synoptic use of radiation measurements from satellite TIROS-II. Mon. Wea. Rev., 90, 1-9 https://doi.org/10.1175/1520-0493(1962)090<0001:SUORMF>2.0.CO;2
  7. Garca Pereda, J., 2010: New developments in the high resolution winds product (HRW), at the satellite application facility on support to nowcasting & very short range forecasting (NWCSAF). Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
  8. Genkova, I., R. Borde, J. Schmetz, C. Velden, K. Holmlund, M. Forsythe, J. Daniels, N. Bormann, and P. Bauer, 2010: Global Atmospheric Motion Vector intercomparison study. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
  9. Hasler, A. F., Skillman, W. C., Shenk, W. E., and Steranka, J., 1979: In Situ Aircraft Verification of the Quality of Satellite Cloud Winds over Oceanic Regions. J. appl. Met., 18, 1481-1489 https://doi.org/10.1175/1520-0450(1979)018<1481:SAVOTQ>2.0.CO;2
  10. Hillger, D. W., and T. H. Vonder Haar, 1988: Estimating noise levels of remotely sensed measurements from satellites using spatial structure analysis. J. Atmos. Oceanic Technol., 5, 206-214. https://doi.org/10.1175/1520-0426(1988)005<0206:ENLORS>2.0.CO;2
  11. Holmlund, K., 1998: The utilization of statistical propertied of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13, 1093-1104. https://doi.org/10.1175/1520-0434(1998)013<1093:TUOSPO>2.0.CO;2
  12. Jedlovec, G. J., and R. J. Atkinson, 1996: Quality and control of water vapor winds. Proc. 8th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., 5-8.
  13. Le Marshall, J., N. Pescod, A. Khaw, and G. Allen, 1993: The real-time generation and application of cloud-drift winds in the Australian region. Aust. Met. Mag., 42, 89-103
  14. Merrill, R. T., W. P. Menzel, W. Baker, J. Lynch, and E. Legg, 1991: A report on the recent demonstration of NOAA's upgraded capability to derive satellite cloud motion winds. Bull. Amer. Meteor. Soc., 72, 372-376.
  15. Negri, R. G., Machado, L. A. T., and Borde R., 2010: A tool to detect inner cloud top dynamics of deep convective system. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
  16. Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S.Warzong, C. S. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 1121-1133. https://doi.org/10.1175/1520-0477(1997)078<1121:FACDWI>2.0.CO;2
  17. NWCSAF, 2011: Product User Manual for "High Resolution Winds" (HRW-PGE09 v3.1) (available at http://www.nwcsaf.org/scidocs/Documentation/SAF-NWCCDOP-INM-SCI-PUM-09_v3.1.pdf).
  18. Ottenbacher, A., M. Tomassini, K. Holmlund, and J. Schmetz, 1997: Low-level cloud motion winds from Meteosat high-resolution visible imagery. Wea. Forecasting, 12, 175-184. https://doi.org/10.1175/1520-0434(1997)012<0175:LLCMWF>2.0.CO;2
  19. Oyama, R., 2010: Recent upgrades of and activities for atmospheric motion vectors at JMA/MSC. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.
  20. Saunders R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Royal Meteorol. Soc., 125, 1407-1425. https://doi.org/10.1256/smsqj.55614
  21. Velden, C. S., J. Daniels, D. Stettner, D. Santek, J. Key, J. Dunion, K. Holmlund, G. Deniel, W. Bresky, and P. Menzel, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205-223. https://doi.org/10.1175/BAMS-86-2-205
  22. Yamashita, K., 2010: Observing system experiments of MTSAT-2 rapid scan atmospheric motion vector for TPARC2008 using the JMA operational NWP system. Proc. 10th Int. Winds Workshop, Tokyo, Japan, EUM P.56, ISSN 1023-0416.

Cited by

  1. Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis vol.31, pp.6, 2015, https://doi.org/10.7780/kjrs.2015.31.6.4
  2. Designing of Conceptual Models on Typhoon and Changma Utilizing GK-2A Satellite Data vol.26, pp.2, 2016, https://doi.org/10.14191/Atmos.2016.26.2.215