DOI QR코드

DOI QR Code

Identification and extensive analysis of inverted-duplicated HBV integration in a human hepatocellular carcinoma cell line

  • Bok, Jeong (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Kim, Kwang-Joong (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Park, Mi-Hyun (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Cho, Seung-Hak (Division of Enteric Bacterial Infections, Center for Infectious Diseases, National Institute of Health) ;
  • Lee, Hye-Ja (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Lee, Eun-Ju (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Park, Chan (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health) ;
  • Lee, Jong-Young (Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health)
  • Received : 2011.12.28
  • Accepted : 2012.04.02
  • Published : 2012.06.30

Abstract

Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.

Keywords

References

  1. Bonilla Guerrero, R. and Roberts, L. R. (2005) The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J. Hepatol. 42, 760-777. https://doi.org/10.1016/j.jhep.2005.02.005
  2. Matsubara, K. and Tokino, T. (1990) Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Mol. Biol. Med. 7, 243-260.
  3. Tsai, W. L. and Chung, R. T. (2010) Viral hepatocarcinogenesis. Oncogene 29, 2309-2324. https://doi.org/10.1038/onc.2010.36
  4. Wollersheim, M., Debelka, U. and Hofschneider, P. H. (1988) A transactivating function encoded in the hepatitis B virus X gene is conserved in the integrated state. Oncogene 3, 545-552.
  5. Brechot, C. (2004) Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127, S56-61. https://doi.org/10.1053/j.gastro.2004.09.016
  6. Gozuacik, D., Murakami, Y., Saigo, K., Chami, M., Mugnier, C., Lagorce, D., Okanoue, T., Urashima, T., Brechot, C. and Paterlini-Brechot, P. (2001) Identification of human cancer-related genes by naturally occurring Hepatitis B Virus DNA tagging. Oncogene 20, 6233-6240. https://doi.org/10.1038/sj.onc.1204835
  7. Minami, M., Daimon, Y., Mori, K., Takashima, H., Nakajima, T., Itoh, Y. and Okanoue, T. (2005) Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene 24, 4340-4348. https://doi.org/10.1038/sj.onc.1208628
  8. Horikawa, I. and Barrett, J. C. (2001) cis-Activation of the human telomerase gene (hTERT) by the hepatitis B virus genome. J. Natl. Cancer. Inst. 93, 1171-1173. https://doi.org/10.1093/jnci/93.15.1171
  9. Feitelson, M. A. and Lee, J. (2007) Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer. Lett. 252, 157-170. https://doi.org/10.1016/j.canlet.2006.11.010
  10. Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T. and Shimotohno, K. (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537-2545. https://doi.org/10.1038/sj.onc.1209283
  11. Wang, J., Zindy, F., Chenivesse, X., Lamas, E., Henglein, B. and Brechot, C. (1992) Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene 7, 1653-1656.
  12. Paterlini-Brechot, P., Saigo, K., Murakami, Y., Chami, M., Gozuacik, D., Mugnier, C., Lagorce, D. and Brechot, C. (2003) Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22, 3911-3916. https://doi.org/10.1038/sj.onc.1206492
  13. Murakami, Y., Saigo, K., Takashima, H., Minami, M., Okanoue, T., Brechot, C. and Paterlini-Brechot, P. (2005) Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54, 1162-1168. https://doi.org/10.1136/gut.2004.054452
  14. Glover, T. W. (2006) Common fragile sites. Cancer. Lett. 232, 4-12. https://doi.org/10.1016/j.canlet.2005.08.032
  15. Ahn, S. H., Yuen, L., Han, K. H., Littlejohn, M., Chang, H. Y., Damerow, H., Ayres, A., Heo, J., Locarnini, S. and Revill, P. A. (2010) Molecular and clinical characteristics of hepatitis B virus in Korea. J. Med. Virol. 82, 1126-1134. https://doi.org/10.1002/jmv.21844
  16. Norder, H., Courouce, A. M., Coursaget, P., Echevarria, J. M., Lee, S. D., Mushahwar, I. K., Robertson, B. H., Locarnini, S. and Magnius, L. O. (2004) Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 47, 289-309. https://doi.org/10.1159/000080872
  17. Hatada, I., Tokino, T., Ochiya, T. and Matsubara, K. (1988) Co-amplification of integrated hepatitis B virus DNA and transforming gene hst-1 in a hepatocellular carcinoma. Oncogene 3, 537-540.
  18. Tokino, T. and Matsubara, K. (1991) Chromosomal sites for hepatitis B virus integration in human hepatocellular carcinoma. J. Virol. 65, 6761-6764.
  19. Tamori, A., Nishiguchi, S., Shiomi, S., Hayashi, T., Kobayashi, S., Habu, D., Takeda, T., Seki, S., Hirohashi, K., Tanaka, H. and Kubo, S. (2005) Hepatitis B virus DNA integration in hepatocellular carcinoma after interferon-induced disappearance of hepatitis C virus. Am. J. Gastroenterol. 100, 1748-1753. https://doi.org/10.1111/j.1572-0241.2005.41914.x
  20. Luo, M. L., Shen, X. M., Zhang, Y., Wei, F., Xu, X., Cai, Y., Zhang, X., Sun, Y. T., Zhan, Q. M., Wu, M. and Wang, M. R. (2006) Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer. Res. 66, 11690-11699. https://doi.org/10.1158/0008-5472.CAN-06-1484
  21. Kusano, N., Shiraishi, K., Kubo, K., Oga, A., Okita, K. and Sasaki, K. (1999) Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 29, 1858-1862. https://doi.org/10.1002/hep.510290636
  22. Chen, C. F., Hsu, E. C., Lin, K. T., Tu, P. H., Chang, H. W., Lin, C. H., Chen, Y. J., Gu, D. L., Wu, J. Y., Chen, Y. T., Hsu, M. T. and Jou, Y. S. (2010) Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma. Hepatology 52, 1690-1701. https://doi.org/10.1002/hep.23847
  23. Sawey, E. T., Chanrion, M., Cai, C., Wu, G., Zhang, J., Zender, L., Zhao, A., Busuttil, R. W., Yee, H., Stein, L., French, D. M., Finn, R. S., Lowe, S. W. and Powers, S. (2011) Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer. Cell. 19, 347-358. https://doi.org/10.1016/j.ccr.2011.01.040
  24. Ornitz, D. M. and Itoh, N. (2001) Fibroblast growth factors. Genome. Biol. 2, REVIEWS3005.
  25. Nicholes, K., Guillet, S., Tomlinson, E., Hillan, K., Wright, B., Frantz, G. D., Pham, T. A., Dillard-Telm, L., Tsai, S. P., Stephan, J. P., Stinson, J., Stewart, T. and French, D. M. (2002) A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol. 160, 2295-2307. https://doi.org/10.1016/S0002-9440(10)61177-7
  26. Pai, R., Dunlap, D., Qing, J., Mohtashemi, I., Hotzel, K. and French, D. M. (2008) Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling. Cancer. Res. 68, 5086-5095. https://doi.org/10.1158/0008-5472.CAN-07-2325
  27. Miura, S., Mitsuhashi, N., Shimizu, H., Kimura, F., Yoshidome, H., Otsuka, M., Kato, A., Shida, T., Okamura, D. and Miyazaki, M. (2012) Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC. cancer. 12, 56. https://doi.org/10.1186/1471-2407-12-56
  28. Buschges, R., Weber, R. G., Actor, B., Lichter, P., Collins, V. P. and Reifenberger, G. (1999) Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain. Pathol. 9, 435-442; discussion 432-433. https://doi.org/10.1111/j.1750-3639.1999.tb00532.x
  29. Wessendorf, S., Schwaenen, C., Kohlhammer, H., Kienle, D., Wrobel, G., Barth, T. F., Nessling, M., Moller, P., Dohner, H., Lichter, P. and Bentz, M. (2003) Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization. Oncogene 22, 1425-1429. https://doi.org/10.1038/sj.onc.1206297
  30. Huang, X., Gollin, S. M., Raja, S. and Godfrey, T. E. (2002) High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Proc. Natl. Acad. Sci. USA. 99, 11369-11374. https://doi.org/10.1073/pnas.172285799
  31. Nishida, N., Fukuda, Y., Komeda, T., Kita, R., Sando, T., Furukawa, M., Amenomori, M., Shibagaki, I., Nakao, K., Ikenaga, M. and Ishizaki, K. (1994) Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer. Res. 54, 3107-3110.
  32. Shamay, M., Agami, R. and Shaul, Y. (2001) HBV integrants of hepatocellular carcinoma cell lines contain an active enhancer. Oncogene 20, 6811-6819. https://doi.org/10.1038/sj.onc.1204879
  33. Park, J. G., Lee, J. H., Kang, M. S., Park, K. J., Jeon, Y. M., Lee, H. J., Kwon, H. S., Park, H. S., Yeo, K. S., Lee, K. U., Kim, S. T., Chung, J. K., Hwang, Y. J., Lee, H. S., Kim, C. Y., Lee, Y. I., Chen, T. R., Hay, R. J., Song, S. Y., Kim, W. H., Kim, C. W. and Kim, Y. I. (1995) Characterization of cell lines established from human hepatocellular carcinoma. Int. J. Cancer. 62, 276-282. https://doi.org/10.1002/ijc.2910620308
  34. Lee, J. H., Ku, J. L., Park, Y. J., Lee, K. U., Kim, W. H. and Park, J. G. (1999) Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World. J. Gastroenterol. 5, 289-295.
  35. Asakawa, S., Abe, I., Kudoh, Y., Kishi, N., Wang, Y., Kubota, R., Kudoh, J., Kawasaki, K., Minoshima, S. and Shimizu, N. (1997) Human BAC library: construction and rapid screening. Gene 191, 69-79. https://doi.org/10.1016/S0378-1119(97)00044-9
  36. Schmittgen, T. D. and Livak, K. J. (2008) Analyzing real- time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101-1108. https://doi.org/10.1038/nprot.2008.73

Cited by

  1. How did hepatitis B virus effect the host genome in the last decade? vol.6, pp.12, 2014, https://doi.org/10.4254/wjh.v6.i12.851