DOI QR코드

DOI QR Code

알칼리활성 고로슬래그 모르타르의 탄산화 특성

Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar

  • 투고 : 2012.02.20
  • 심사 : 2012.04.02
  • 발행 : 2012.06.30

초록

알칼리활성고로슬래그(AAS)는 이산화탄소 배출 부하가 큰 OPC의 가장 확실한 대체 재료로써 구조재로 이용하기 위해서는 내구성 평가 및 검증이 필요하다. 내구성 평가지표의 큰 비중을 차지하고 있는 것이 탄산화 저항성인데, AAS는 OPC에 비해 탄산화 저항성이 약한 것으로 알려져 있다. 이 연구에서는 AAS의 빠른 탄산화 특성과 그 원인을 알아보기 위해 탄산화 전후 물리적 특성 변화와 탄산화에 의해 수화생성물들이 어떤 변화를 보이는지 살펴보았다. 그 결과 AAS는 OPC와 달리 수화생성물의 대부분이 CSH이며, 수산화칼슘이 거의 생성되지 않았고, AAS의 CSH는 OPC의 CSH와 다른 구조임을 알 수 있었다. AAS는 탄산화 후 CSH가 비정질의 실리카겔로 변하고, 일부 알루미나화합물은 구조가 완전 붕괴되어 탄산화 후 식별되지 않는데, 이 때문에 AAS는 탄산화 후 압축강도가 약해진 것으로 판단된다. AAS의 활성화제의 첨가량을 높이면, 빠른 반응속도로 CSH의 생성량이 많아지고 조직이 치밀해져서 압축강도와 탄산화저항성이 향상된다.

Alkali-activated slag (AAS) is the most obvious alternative materials that can replace OPC. But, AAS industrial usage as a structural material should be evaluated for its durability. Carbonation resistance is one of the most important factors in durability evaluation. Test results for 18 slag-based mortars activated by sodium silicate and 6 OPC mortars were obtained in this study to verify the carbonation property. Main variables considered in the study were flow, compressive strength before and after carbonation, and carbonation depth. Mineralogical and micro-structural analysis of OPC and AAS specimens prior to and after carbonation was conducted using XRD, TGA, FTIR FE-SEM. Test results showed that CHS was major hydration products of AAS and, unlike OPC, no other hydration products were found. After carbonation, CSH of hydration product in AAS turned into an amorphous silica gel, and alumina compounds was not detected. From the analysis of the results, it was estimated that the micro-structures of CSH in AAS easily collapsed during carbonation. Also, the results showed that this collapse of chemical chain of CSH lowered the compressive strength of concrete after carbonation. By increasing the dosage of activators, carbonation resistance and compressive strength were effectively improved.

키워드

참고문헌

  1. The Kyoto Protocol, 2002.
  2. IPCC Report, Part 1, 2007.
  3. Damtoft, J S., Lukasik, J., Herfort, D., Sorrentino, D., and Gartner, E. M., "Sustainable Development and Climate Change Initiatives," Cement and Concrete Research, Vol. 38, Issue 2, 2008, pp. 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008
  4. Malhotra, V. M., "Introduction: Sustainable Development and Concrete Technology," Concrete International, Vol. 24, No. 7, 2001, 22 pp.
  5. 송진규, 양근혁, 김건우, 김병조, "고로슬래그와 나트륨 계열 활성화제를 이용한 무시멘트 모르타르의 특성," 대한건축학회 논문집 구조계, 26권, 6호, 2010, pp. 61-68.
  6. 양근혁, 심재일, 이설, 황혜주, "알카리활성 무시멘트 경량모르타르의 유동성, 압축강도 및 내화특성," 대한건축학회 논문집, 25권, 8호, 2009, pp. 151-158.
  7. 양근혁, 오승진, 송진규, "경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성," 콘크리트학회 논문집, 20권, 3호, 2008, pp. 405-412. https://doi.org/10.4334/JKCI.2008.20.3.405
  8. 시멘트 통계 연보, 한국시멘트협회, 2010.
  9. Krivenko, P. D., Alkaline Cements, Paper Presented at the First International Conference on Alkaline Cements and Concrete, Kiev, Ukraine, 1994.
  10. Shi, C., Krivenko, P. V., and Roy, D., Alkali-Activated Cements and Concrete, Taylor and Francis, ISBN 10: 0-415-70004-3, 2006.
  11. Puertas, F., Palacios, M., and Vazquez, T., "Carbonation Process of Alkali-Activated Slag Mortars," Journal of Materials Science, Vol. 41, No. 10, 2006, pp. 3071-3082. https://doi.org/10.1007/s10853-005-1821-2
  12. Bernal, S. A., Gutierrez, R. M., Provis, J. L., and Rose, V., "Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate-Activated Slags," Cement and Concrete Research, Vol. 40, Issue 6, 2010, pp. 898-907. https://doi.org/10.1016/j.cemconres.2010.02.003
  13. Bernal, S. A., Rodriguez, E. D., Gutierrez, R. M., Provis, J. L., and Delvasto, S., "Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash," Waste and Biomass Valorization, Vol. 3, No. 1, 2011, pp. 99-108.
  14. Fernandez-Jimenez, A., Puertas, F., Sobrados, I., and Sanz, J., "Structure of Calcium Silicate Hydrates Formed in Alkaline- Activated Slag: Influence of Type of Alkaline Activator," Journal of the American Ceramic Society, Vol. 86, Issue 8, 2003, pp. 1389-1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x
  15. Chang, C. and Chen, J., "The Experimental Investigation of Concrete Carbonation Depth," Cement and Concrete Research, Vol. 36, Issue 9, 2006, pp. 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
  16. Peng, G. F. and Peng, Z. S., "Change in Microstructure of Hardened Cement Paste Subjected to Elevated Temperatures," Construction and Building Materials, Vol. 22, Issue 4, 2008, pp. 593-599. https://doi.org/10.1016/j.conbuildmat.2006.11.002

피인용 문헌

  1. Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar vol.24, pp.5, 2012, https://doi.org/10.4334/JKCI.2012.24.5.577
  2. A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products vol.1, pp.1, 2013, https://doi.org/10.14190/JRCR.2013.1.1.058
  3. Service Life Assessment and Restrain Methods of Carbonation Attack on PC Outer Wall of LNG Storage Tanks vol.18, pp.2, 2014, https://doi.org/10.7842/kigas.2014.18.2.73
  4. Fundamental Study of Alkali-Activated Concrete Properties based on Modified Slag vol.17, pp.2, 2015, https://doi.org/10.7855/IJHE.2015.17.2.001
  5. Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure vol.17, pp.4, 2015, https://doi.org/10.7855/IJHE.2015.17.4.041