DOI QR코드

DOI QR Code

Biocompatibility of porous hydroxyapatite ceramics prepared from bovine bones

소 뼈로부터 제조한 다공형 하이드록시아파타이트 세라믹스의 생체친화 특성

  • Lee, Jong-Kook (Department of Advanced Materials Engineering, Chosun University, BK21 Education Center of Mould Technology for Advanced Materials & Parts, Chosun University) ;
  • Ko, Young-Hwa (Department of Advanced Materials Engineering, Chosun University, BK21 Education Center of Mould Technology for Advanced Materials & Parts, Chosun University) ;
  • Lee, Nan-Hee (Department of Advanced Materials Engineering, Chosun University, BK21 Education Center of Mould Technology for Advanced Materials & Parts, Chosun University)
  • 이종국 (조선대학교 신소재공학과, BK21 첨단소재부품 금형기술 인력양성사업단) ;
  • 고영화 (조선대학교 신소재공학과, BK21 첨단소재부품 금형기술 인력양성사업단) ;
  • 이난희 (조선대학교 신소재공학과, BK21 첨단소재부품 금형기술 인력양성사업단)
  • Received : 2012.04.19
  • Accepted : 2012.05.18
  • Published : 2012.06.30

Abstract

Natural hydroxyapatite powder was obtained from the calcination of bovine bones and its porous compacts were fabricated by pressureless sintering at 1100 and $1200^{\circ}C$ for 1h. To evaluate and compare their biocompatibility with porosity, we investigated the support of osteoblast cells growth and cytotoxicity using the MG-63 cell line model in vitro. Sintered hydroxyapatite ceramics have a porous microstructure with a relative density of 65 % at $1100^{\circ}C$ and 82 % at $1200^{\circ}C$. Cells adherence to the surface of hydroxyapatite ceramics was observed in a day after the cell culture, and the spreading of cytoplasm around the nucleus was shown after 3 day cell culture. Most of cells were extended to the surface of hydroxyapatite through the wide area. Cell viability was nearly the same till 3 days culturing. But the rate of cell growth is higher in the specimen sintered at $1100^{\circ}C$ than that of $1200^{\circ}C$. It indicates that the porosity is an important factor to enhance the cell viability in the porous hydroxyapatite ceramics derived from bovine bones.

소뼈를 하소하여 천연 하이드록시아파타이트 분말을 얻은 다음, $1100^{\circ}C$$1200^{\circ}C$로 상압 소결하여 기공율이 각각 35 % 및 18 %인 다공성 하이드록시아파타이트를 제조한 후 이들 시편의 생체친화성을 평가하였다. 골아세포의 성장속도과 세포독성의 유무에 따라 평가되는 생체친화성은 MG-63 세포의 부착능과 분화되어 증식되는 세포의 수로 측정하였다. in vitro에서 세포 반응을 관찰한 결과 소뼈로부터 제조된 하이드록시아파타이트 시편은 독성이 없고 생체 친화성이 좋은 시편이었다. 세포배양 1일 후부터 하이드록시아파타이트 표면에 세포가 부착되었고, 세포배양 후 3일 후에는 핵 주위로 세포질이 퍼져나갔으며, 5일 후에는 부착된 세포의 수가 크게 증가하였다. 배양 초기에는 밀도에 관계 없이 세포의 부착능이 유사하였지만, 세포 배양 시간이 증가하면서 기공율이 높은 시편에서 세포의 부착 및 성장이 더 활발하게 진행되었다.

Keywords

References

  1. A.S. Posner, "The mineral of bone", Clin. Orthop. 200 (1985) 87.
  2. M. Schieker, H. Seitz, I. Drosse, S. Seitz and W. Mutschler, "Biomaterials as scaffold for bone tissue engineering", Med. Europ. J. Trauma Medicine European Journal of Trauma 32 (2006) 114.
  3. L.L. Hench, "Bioceramics: from concept to clinic", J. Am. Ceram. Soc. 74 (1991) 1487. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  4. H. Yuan, Z. Yang, Y. Li, X. Zhang, J.D. De Bruijn and K. De Groot, "Osteoinduction by calcium phosphate biomaterials", J. Mater. Sci.; Materials in Medicine 9 (1998) 723. https://doi.org/10.1023/A:1008950902047
  5. Y. Fang, D.K. Agrawal and D.W. Roy, "Hydroxyapatite and related compounds", Ed. P.W. Brown (CRC Press. London & Tokyo, 1994) p. 269.
  6. L. Yubao, Z Xindong and K. De. Groot, "Hydrolysis and phase transition of alpha-tricalcium phosphate", Biomaterials 18 (1997) 737. https://doi.org/10.1016/S0142-9612(96)00203-7
  7. H. Oonishi, "Orthopaedic applications of hydroxyapatite", Biomaterials 12 (1991) 171. https://doi.org/10.1016/0142-9612(91)90196-H
  8. N.O. Engin and A.C. Tas, "Manufacture of macroporous calcium hydroxyapatite bioceramics", J. Europ. Ceram. Soc. 19 (1999) 2569. https://doi.org/10.1016/S0955-2219(99)00131-4
  9. S.J. Lee, "Characteristics of calcium phosphate fabricated using a natural material", J. Ceram. Proc. Researh 11 (2010) 586.
  10. Y.K. Song, D.H. Kim, T.W. Kim, Y.D. Kim, H.C. Park and S.Y. Yoon, "Determination of stoichiometric Ca/P ratio in biphasic calcium phosphates using X-ray diffraction analysis", J. Kor. Cryst. Growth Cryst. Tech. 20 (2010) 93. https://doi.org/10.6111/JKCGCT.2010.20.2.093
  11. J.E. Barralet, L. Grover, T. Gaunt, A.J. Wright and I.R. Gibson, "Preparation of macroporous calcium phosphate cement tissue engineering scaffold", Biomaterials 23 (2002) 3063. https://doi.org/10.1016/S0142-9612(01)00401-X
  12. R.Z. LeGeros and J.P. Legeros, "Introduction to bioceramics", Ed., L.L. Hench and J. Wilson (World Scientific, Singapore, 1993) p. 139
  13. J. Wang, R. Yang, L.C. Gerstenfeld and M.J. Glimcher, "Characterization of demineralized bone matrix-induced osteogenesis in rat calvarial bone defects: III. gene and protein expression", Calcif. Tissue Int. 67 (2000) 314. https://doi.org/10.1007/s002230001130
  14. E. Milella, F. Cosentino, A. Licciulli and C. Massaro, "Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process", Biomaterials 22 (2001) 1425. https://doi.org/10.1016/S0142-9612(00)00300-8
  15. C.Y. Ooi, M. Hamdi and S. Ramesh, "Properties of hydroxyapatite produced by annealing of bovine bone", Ceramics Inter. 33 (2007) 1171. https://doi.org/10.1016/j.ceramint.2006.04.001
  16. M.J. Mo, S.U. Kim, H.Y. Shin, D.S. Im, I.H. Jung, J.S. Ko and W.K. Lee, "Biological responses of osteoblastic HOS cells to titanium and calcium phosphate-coated films", J. Ind. Eng. Chem. 11 (2005) 507.
  17. P. Ducheyne and Q. Qiu, "Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function", Biomaterials 20 (1999) 2287. https://doi.org/10.1016/S0142-9612(99)00181-7
  18. L. Yubao, Z. Xingdong and K. de Groot, "Hydrolysis and phase transition of alpha-tricalcium phosphate", Biomaterials 18 (1997) 737. https://doi.org/10.1016/S0142-9612(96)00203-7
  19. S.F. Hulbert, J.C. Bokros, L.L. Hench, J. Wilson, G. Heimke and M. Jarcho, "Ceramics in clinical applications, past, present and future", P. Vincenzini Ed., (Elsevier, Amsterdam, 1987) p. 189.
  20. L.L. Hench, "Bioceramics", J. Am. Ceram. Soc. 81 (1998) 1705.
  21. H. Dadarathy, C. Riley, H.D. Coble, W.R. Lacefield and G. Maybee, "Hydroxyapatite/metal composite coatings formed by electrocodeposition", J. Biomed. Mater. Res. 31 (1996) 81. https://doi.org/10.1002/(SICI)1097-4636(199605)31:1<81::AID-JBM10>3.0.CO;2-P
  22. L. Hong, H.C. Xu and K. de. Groot, "Tensile strength of the interface between hydroxyapatite and bone", J. Biomed. Mater. Res. 26 (1992) 7. https://doi.org/10.1002/jbm.820260103
  23. M.I. Kay, R.A. Young and A.S. Posner, "Crystal structure of hydroxyapatite", Nature 204 (1964) 1050. https://doi.org/10.1038/2041050a0
  24. H. Monma, S. Ueno and T. Kanazawa, "Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate", J. Chem. Tech. Biotechnol. 31 (1981) 15. https://doi.org/10.1002/jctb.280310105
  25. J.W. Reid, L.H. Tuck, S. Michael, K. Fargo and J.A. Hendry, "Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate", Biomaterials 27 (2006) 2916. https://doi.org/10.1016/j.biomaterials.2006.01.007
  26. A. Ruksudjarit, K. Pengpat, G. Rujijanagul and T. Tunkasiri, "Synthesis andcharacterization of nanocrystalline hydroxyapatite from natural bovine bone", Current Applied Physics. 8 (2008) 270. https://doi.org/10.1016/j.cap.2007.10.076
  27. C. Rey, C. Combes, C. Drouet and M.J. Glimcher, "Bone mineral: update on chemical composition and structure", Osteoporos Int. 20 (2009) 1013. https://doi.org/10.1007/s00198-009-0860-y
  28. F. Chen, Z.C. Wang and C.J. Lin, "Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials", Materials Letters 57 (2002) 858. https://doi.org/10.1016/S0167-577X(02)00885-6
  29. S.M. Kuo, S.J. Chang, C.C Ho, S.F. Chen and L.C. Lin, "Preparation of nano-sized particles of collagen ii by an electrostatic field system", Conf. Proc. IEEE Eng. Med. Biol. Soc. 2 (2005) 1248.
  30. D.A. Wahl and J.T. Czernuszka, "Collagen-hydroxyapatite composites for hard tissue repair", European Cells & Materials 11 (2006) 43. https://doi.org/10.22203/eCM.v011a06
  31. B.H. Yoon and H.E. Kim, "Development and perspective of biomaterials for spinal fusion", Korean J. Spine 7 (2010) 221.
  32. G. Poumarat and P. Squire, "Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft", Biomaterials 14 (1993) 337. https://doi.org/10.1016/0142-9612(93)90051-3
  33. Y. G. Kim, D.S. Seo and J.K. Lee, "Comparison of dissolution resistance in artificailly hydroxyapatite and biologically derived hydroxyapatite ceramics", J. Phys. Chem. Sol. 69 (2008) 1556. https://doi.org/10.1016/j.jpcs.2007.10.102
  34. I.K. Lee, I.H. Han, S.W. Hwang and J.J. Ryu, "Analysis of attachment, proliferation and differentiation response of human mesenchymal stem cell to various implant surfaces coated whit rhBMP-2", J. Korean Acad. prosthodintics 50 (2012) 48.
  35. H.K. O, K.S. Hong, C.H. Chung and S.B. Yim "The comparative study: the regenerative effect depends on size of bone graft material in bone loss site around dental implant", J. Korean Acad Periodontol 38 (2008) 493.

Cited by

  1. Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part I. cross-sectional area vol.23, pp.2, 2013, https://doi.org/10.6111/JKCGCT.2013.23.2.67
  2. Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part II. number and shapes vol.23, pp.2, 2013, https://doi.org/10.6111/JKCGCT.2013.23.2.76