DOI QR코드

DOI QR Code

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal (Ocean Engineering Division, National Institute of Oceanography) ;
  • Rao, Subba (Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka) ;
  • N., Harish (Ocean Engineering Division, National Institute of Oceanography) ;
  • Lokesha, Lokesha (Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka)
  • Published : 2012.06.30

Abstract

The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

Keywords

References

  1. Aydogan, B., Ayat, B., Ozturk, M.N., Cevik, E.O. and Yuksel, Y., 2010. Current velocity forecasting in straits with artificial neural networks, a case study: Strait of Istanbul. J. Ocean Engineering, 37(5-6), pp.443-453. https://doi.org/10.1016/j.oceaneng.2010.01.016
  2. Baird, W.F. and Hall, H.R., 1984. The Design of breakwaters using quarried stones. Proc., 19th Int. Conf. On Coastal Engineering. pp.2580-2591.
  3. Balas, C.E., Koc, M.L. and Tur, R., 2010. Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters. J. Applied Ocean Research, 32, pp.425-433. https://doi.org/10.1016/j.apor.2010.09.005
  4. Brunn, P. and Johannesson, P., 1976. Parameters affecting stability of rubble mounds. Journal of the Waterways Harbors and Coastal Engineering Division, 102(2), pp.141-163.
  5. Burges, C.J.C., 1998. A tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery, 2(2), pp.121-167. https://doi.org/10.1023/A:1009715923555
  6. Dong, B., Cao, C. and Lee, S.E., 2005. Applying support vector machines to predict building energy consumption in tropical region. J. Energy and Buildings, 37(5), pp.545-553. https://doi.org/10.1016/j.enbuild.2004.09.009
  7. Hall, K.R. and Kao, J.S., 1991. The influence of armor stone gradation on dynamically stable breakwaters. J. Coastal Engineering, 15(4), pp.333-346. https://doi.org/10.1016/0378-3839(91)90015-9
  8. Hashemi, M.R., Ghadampour, Z. and Neill, S.P., 2010. Using an artificial neural network to model seasonal changes in beach profiles. J. Ocean Engineering, 37(14-15), pp.1345-1356. https://doi.org/10.1016/j.oceaneng.2010.07.004
  9. Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Prentice-Hall. Nj 842.
  10. Iglesias, G., Castro, A. and Fraguela, J.A., 2010. Artificial intelligence applied to floating boom behavior under waves and currents. J. Ocean Engineering, 37(17-18), pp.1513-1521. https://doi.org/10.1016/j.oceaneng.2010.09.007
  11. Jang, J.S.R., 1993. ANFIS: Adaptive Network Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), pp.665-685. https://doi.org/10.1109/21.256541
  12. Karatzoglou, A. and Meyer, D., 2006. Support Vector Machines in R. Journal of Statistical Software, 15(9), pp.1-28.
  13. Kavaklioglu, K., 2011. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression. J. Applied Energy, 88(1), pp.368-375. https://doi.org/10.1016/j.apenergy.2010.07.021
  14. Kazperkiewiecz, J., Raez, J. and Dubrawski, A., 1995. HPC Strength prediction using artificial neural networks. ASCE Journal of Computing in Civil Engineering, 9(4), pp.279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
  15. Kim, D.K., Kim, D.H., Chang, S.K., Lee, J.J. and Lee, D.H., 2010. Stability Number Prediction for Breakwater Armor Blocks USing Support Vector Regression. KSCE Journal of Civil Engineering, 15(2), pp.225-230.
  16. Kim, D.H and Park, W.S., 2005. Neural network for design and reliability analysis of rubble mound breakwater. J. Ocean Engineering, 32, pp.1332-1349. https://doi.org/10.1016/j.oceaneng.2004.11.008
  17. Mahjoobi, J. and Mosabbeb, E.A., 2009. Prediction of significant wave height using regressive support vector machines. J. Ocean Engineering, 36(5), pp.339-347. https://doi.org/10.1016/j.oceaneng.2009.01.001
  18. Mandal, S., Subba Rao, and Raju, D.H., 2005. Ocean wave parameters estimation using backpropagation neural networks. J. Marine Structures, 18(3), pp.301-308. https://doi.org/10.1016/j.marstruc.2005.09.002
  19. Mase, H., Masanobu, S. and Tetsuo, S., 1995. Neural network for stability analysis of rubble mound breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering, 121(6), pp.294-299. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(294)
  20. Moghim, M.N., Shafieefar, M., Tørum, A. and Chegini, V., 2011. A New Formula for the Sea State and Structural Parameters Influencing the Stability of Homogeneous Reshaping Berm Breakwaters. Coastal Engineering, Elsevier, 58(8), pp.706-721. https://doi.org/10.1016/j.coastaleng.2011.03.006
  21. Patil, S.G., Mandal, S., Hegde, A.V. and Alavandar, S., 2011. Neuro-fuzzy based approach for wave transmission prediction of interlaced multilayer moored floating pipe breakwater. J. Ocean Engineering, 38(1), pp.186-196. https://doi.org/10.1016/j.oceaneng.2010.10.009
  22. Priest, M.S., Pugh, J.W. and Singh, R., 1964. Seaward profile for rubble mound breakwaters. Proc. 9th Int. Conf. on Coastal Engineering, ASCE. pp.553-559.
  23. Sarjakoski, T., 1988. Artificial Intelligence in Photogrammetry. Elsevier Science Publishers B.V., 42(5-6), pp. 245-270.
  24. Smith, W.G., Kobayashi, N. and Kaku, S., 1992. Profile changes of rock slopes by irregular waves. Proceedings of 23th International Conference Coast Engineering ASCE. New York, NY, 1992, pp.1559-1572.
  25. Smola, A.J. and Scholkopf, B., 1998. A Tutorial on Support Vector Regression. NeuroCOLT, Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK.
  26. Subba Rao, Pramod, C.H. and Rao, B.K., 2004. Stability of berm breakwater with reduced armor stone weight. J. Ocean Engineering, 31(11-12), pp.1577-1589. https://doi.org/10.1016/j.oceaneng.2003.12.010
  27. Subba Rao, Subrahmanya, K., Rao, B.K. and Chandramohan, V.R., 2008. Stability aspects of nonreshaped berm break-waters with reduced armour weight. Journal of Waterway, Port, Coastal and Ocean Engineering, 134(2), pp.81-87. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:2(81)
  28. Torum, A., Franziska, K. and Andreas Menze., 2003. On berm breakwaters stability, scour, overtopping. J. Coastal Engineering, 49(3), pp.209-238. https://doi.org/10.1016/S0378-3839(03)00062-0
  29. Vairappan, C., Tamura, H., Gao, S. and Tan, Z., 2009. Batch type local search-based Artificial Neuro-Fuzzy Inference Systems (ANFIS) with self-feedbacks for time series prediction. J. Neuro computing, 72(7-9), pp.1870-1877.
  30. Van der Meer, J.W., 1988. Deterministic and probabilistic design of breakwater armor layer. Journal of Waterway, Port, Coastal and Ocean Engineering, 114(1), pp.66-80. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  31. Van der Meer, J.W., 1992. Stability of the seaward slope of berm breakwaters. J. Coastal Engineering, 16(2), pp.205-234. https://doi.org/10.1016/0378-3839(92)90037-U
  32. Vapnik, V., 1995. The nature of statistical learning theory. Springer Berlin, New York.
  33. Vapnik, V., Golowich, S. and Smola, A., 1997. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Mozer, M. Jordan, and T. Petsche, eds. Neural Information Processing Systems, 9, MIT Press, Cambridge, MA.
  34. Voga, G.P. and Belchior, J.C., 2006. An approach for interpreting thermogravimetric profiles using artificial intelligence. J. Thermochimica Acta, 452(2), pp.140-148.
  35. Yagci, O., Mercan, D.E., Cigizoglu, H.K. and Kabdasli, M.S., 2005. Artificial intelligence methods in breakwater damage ratio estimation. J. Ocean Engineering, 32, pp.2088-2106. https://doi.org/10.1016/j.oceaneng.2005.03.004