DOI QR코드

DOI QR Code

Enhancement of Grain Refinement and Formability of Cross-Roll-Rolled Ni-10Cr Alloy

교차롤압연된 Ni-10Cr 합금의 결정립 미세화와 성형성 향상

  • Song, Kuk-Hyun (Korea Institute of Industrial Technology, Gangneung Science Industry Park) ;
  • Kim, Won-Yong (Korea Institute of Industrial Technology, Gangneung Science Industry Park) ;
  • Son, Hyun-Taek (Korea Institute of Industrial Technology)
  • 송국현 (한국생산기술연구원 비철금속청정기술센터) ;
  • 김원용 (한국생산기술연구원 비철금속청정기술센터) ;
  • 손현택 (한국생산기술연구원 동력부품연구그룹)
  • Received : 2012.05.29
  • Accepted : 2012.06.13
  • Published : 2012.06.27

Abstract

This study evaluated the enhancement of microstructural and mechanical properties of a cross rolled Ni-10Cr alloy, comparing with conventionally rolled material. Cold rolling was carried out to 90% thickness reduction and the specimens were subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. Cross roll rolling was carried out at a tilted roll mill condition of $5^{\circ}$ from the transverse direction in the RD-TD plane. In order to observe the deformed microstructures of the cold rolled materials, transmission electron microscopy was employed. For annealed materials after rolling, in order to investigate the grain boundary characteristic distributions, an electron back-scattering diffraction technique was applied. Application of cold rolling to the Ni-10Cr alloy contributed to notable grain refinement, and consequently the average grain size was refined from 135 ${\mu}m$ in the initial material to 9.4 and 4.2 ${\mu}m$ in conventionally rolled and cross rolled materials, respectively, thus showing more significantly refined grains in the cross rolled material. This refined grain size led to enhanced mechanical properties such as yield and tensile strengths, with slightly higher values in the cross rolled material. Furthermore, the <111>//ND texture in the CRR material was better developed compared to that of the CR material, which contributed to enhanced mechanical properties and formability.

Keywords

References

  1. G. S. Was, Corrosion, 46, 319 (1990). https://doi.org/10.5006/1.3585110
  2. W. F. Smith, Structure and Properties of Engineering Alloys, p. 498, McGraw-Hill, New York, USA (1994).
  3. K. Neishi, Z. Horita and T. G. Langdon, Mater. Sci. Eng., 325, 54 (2002). https://doi.org/10.1016/S0921-5093(01)01404-6
  4. S. Komura, Z. Horita, M. Nemoto and T. G. Langdon, J. Mater. Res., 14, 4044 (1999). https://doi.org/10.1557/JMR.1999.0546
  5. Y. Chino, K. Sassa, A. Kamiya and M. Mabuchi, Mater. Sci. Eng., 473, 195 (2007).
  6. J. J. Nah, H. G. Kang, M. Y. Huh and O. Engler, Scripta Mater., 58, 500 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.049
  7. A. Mishra, B. K. Kad, F. Gregori and M. A. Meyers, Acta Mater., 55, 13 (2007). https://doi.org/10.1016/j.actamat.2006.07.008
  8. A. Kundu, R. Kapoor, R. Tewari and J. K. Chakravartty, Scripta Mater., 58, 235 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.046
  9. C. M. Cepeda-Jiménez, J. M. García-Infanta, A. P. Zhilyaev, O. A. Ruano and F. Carreno, Mater. Sci. Eng., 528, 7938 (2011). https://doi.org/10.1016/j.msea.2011.07.016
  10. W. J. Kim, C. S. Chung, D. S. Ma, S. I. Hong and H. K. Kim, Scripta Mater., 49, 333 (2003). https://doi.org/10.1016/S1359-6462(03)00260-4
  11. J. B. Lee, T. J. Konno and H. G. Jeong, Mater. Sci. Eng. B, 161, 166 (2009). https://doi.org/10.1016/j.mseb.2009.02.021
  12. T. Hebesberger, H. P. Stüwe, A. Vorhauer, F. Wetscher and R. Pippan, Acta Mater., 53, 393 (2005). https://doi.org/10.1016/j.actamat.2004.09.043
  13. S. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 17, 521 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.10.521
  14. Y. Chino, K. Sassa, A. Kamiya and M. Mabuchi, Mater. Sci. Eng., 441, 349 (2006). https://doi.org/10.1016/j.msea.2006.08.038
  15. P. Van Houtte, in Proceedings of the 7th International Conference on Textures of Materials(Noordwijkerhout, Netherlands, September 1984) ed. C. M. Brakman, P. Jongenburger and E. J. Mittemeijer (Netherlands Society for Materials Science, Zwijndrecht, Netherlands, 1984) p.7.
  16. S. H. Kim, H. G. Kang, M. Y. Huh and O. Engler, Mater. Sci. Eng., 508, 121 (2009). https://doi.org/10.1016/j.msea.2008.12.028
  17. D. G. Kim, H. T. Son, D. W. Kim, Y. H. Kim and K. M Lee, J. Alloy. Comp., 509, 9413 (2011). https://doi.org/10.1016/j.jallcom.2011.07.013
  18. D. G. Brandon, Acta Metall., 14, 1479 (1966). https://doi.org/10.1016/0001-6160(66)90168-4
  19. K. H. Song, H. S. Kim and W. Y. Kim, Mater. Trans., 52, 1070 (2011). https://doi.org/10.2320/matertrans.M2010406