DOI QR코드

DOI QR Code

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Moon, Jung-In (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University) ;
  • Kim, Taik-Nam (Department of Materials Science and Engineering, Graduate School of PaiChai University)
  • 투고 : 2012.06.01
  • 심사 : 2012.06.14
  • 발행 : 2012.06.27

초록

The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).

키워드

참고문헌

  1. E. N. El Qada, S. J. Allen and G. M. Walker, Chem. Eng. J., 124, 103 (2006). https://doi.org/10.1016/j.cej.2006.08.015
  2. B. Y. Jibril, R. S. Al-Maamari, G. Hegde, N. Al-Mandhary and O. Houache, J. Anal. Appl. Pyrol., 80, 277 (2007). https://doi.org/10.1016/j.jaap.2007.03.003
  3. C. Zhang, D. Long, B. Xing, W. Qiao, R. Zhang, L. Zhan, X. Liang and L. Ling, Electrochem. Comm., 10, 1809 (2008). https://doi.org/10.1016/j.elecom.2008.09.019
  4. J. N. Sahu, J. Acharya and B. C. Meikap, Bioresource Tech., 101, 1974 (2010). https://doi.org/10.1016/j.biortech.2009.10.031
  5. S. Yorgun, N. Vural and H. Demiral, Microporous Mesoporous Mater., 122, 189 (2009). https://doi.org/10.1016/j.micromeso.2009.02.032
  6. J. Acharya, J. N. Sahu, B. K. Sahoo, C. R. Mohanty and B. C. Meikap, Chem. Eng. J., 150, 25 (2009). https://doi.org/10.1016/j.cej.2008.11.035
  7. K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia and X. Duan, Bioresource Tech., 101, 6163 (2010). https://doi.org/10.1016/j.biortech.2010.03.001
  8. G. Afrane and O. W. Achaw, Bioresource Tech., 99, 6678(2008). https://doi.org/10.1016/j.biortech.2007.11.071
  9. S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang and H. Xia, Appl. Surf. Sci., 255, 8443 (2009). https://doi.org/10.1016/j.apsusc.2009.05.150
  10. M. Seredych, E. Deliyanni and T. J. Bandosz. Fuel, 89, 1499 (2010). https://doi.org/10.1016/j.fuel.2009.09.032
  11. Z. Zhu, A. Li, L. Yan, F. Liu and Q. Zhang. J. Colloid Interface Sci., 316, 628 (2007). https://doi.org/10.1016/j.jcis.2007.09.016
  12. Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma and Y. Guo, Adv. Colloid Interface Sci., 163, 39 (2011). https://doi.org/10.1016/j.cis.2011.01.006
  13. K. Y. Foo and B. H. Hameed, Bioresource Tech., 102, 9814 (2011). https://doi.org/10.1016/j.biortech.2011.07.102
  14. N. Bagheri and J. Abedi, Chem. Eng. Res. Des., 87, 1059 (2009). https://doi.org/10.1016/j.cherd.2009.02.001
  15. A. Yuan and Q. Zhang, Electrochem. Comm., 8, 1173 (2006). https://doi.org/10.1016/j.elecom.2006.05.018
  16. H. Oda and Y. Nakagawa, Carbon, 41, 1037 (2003). https://doi.org/10.1016/S0008-6223(03)00013-7
  17. S. Biloe, V. Goetz and A. Guillot, Carbon, 40, 1295 (2002). https://doi.org/10.1016/S0008-6223(01)00287-1
  18. V. K. Gupta and A. Rastogi, J. Hazard. Mater., 153, 759 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.021
  19. V. K. Gupta and A. Rastogi, J. Hazard. Mater., 152, 407 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.028
  20. V. K. Gupta, S. K. Srivastava, D. Mohan and S. Sharma, Waste Manag., 17, 517 (1997) https://doi.org/10.1016/S0956-053X(97)10062-9
  21. V. K. Gupta, I. Ali, V. K. Saini, T. V. Gerven, B. V. der Bruggen and C. Vandecasteele, Ind. Eng. Chem. Res., 44, 3655 (2005). https://doi.org/10.1021/ie0500220
  22. V. K. Gupta, C. K. Jain, I. Ali, S. Chandra and S. Agarwal, Water Res., 36, 2483 (2002). https://doi.org/10.1016/S0043-1354(01)00474-2
  23. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 156, 2 (2010). https://doi.org/10.1016/j.cej.2009.09.013
  24. X. -J. He, T. Wang, J. -S. Qiu, X. -Y. Zhang, X. -T. Wang and M. -D. Zheng, New Carbon Mater., 26, 313 (2011). https://doi.org/10.1016/S1872-5805(11)60084-X
  25. A. P. Terzyk, Colloid. Surface. Physicochem. Eng. Aspect., 177, 23 (2001). https://doi.org/10.1016/S0927-7757(00)00594-X

피인용 문헌

  1. General areas of the use of a microwave radiation for processing of plant raw materials (review) vol.41, pp.7, 2015, https://doi.org/10.1134/S1068162015070110