DOI QR코드

DOI QR Code

반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room

  • 투고 : 2012.02.02
  • 심사 : 2012.06.08
  • 발행 : 2012.06.30

초록

비정상(unsteady) 화재성장이 발생되는 반밀폐된 구획에서 환기부족화재의 열 및 화학적 특성에 관한 FDS(Fire Dynamics Simulator)의 예측성능 평가가 수행되었다. 이를 위해 실규모 ISO 9705 표준 화재실의 출입구 폭이 0.1 m로 축소되었으며, spray 노즐을 통해 Heptane 연료유량은 선형적으로 증가되었다. 수치계산에 대한 신뢰도 확보를 위하여 동일 조건에서 수행된 실험결과와의 상세한 비교가 이루어졌다. 적절한 격자계를 이용한 FDS의 결과는 구획 내부의 온도 및 열유속(heat flux)은 비교적 잘 예측하지만, 비정상 CO 및 $CO_2$ 생성특성은 적절히 예측하지 못함을 확인하였다. 이러한 결과는 최근 수행된 유사조건의 정상상태 환기부족 구획화재에 대한 FDS 예측결과와 상반된 것으로서, 반밀폐된 구획화재 모델링에서 FDS를 이용한 비정상 CO 생성특성 예측에 상당한 주위가 요구됨을 확인하였다.

The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

키워드

참고문헌

  1. C. H. Hwang, "Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-closed Compartment", Journal of Korean Institute of Fire Science & Engineering, Vol. 26, No. 2, pp. 75-83 (2012). https://doi.org/10.7731/KIFSE.2012.26.2.075
  2. M. Bundy, A. Hamins, E. L. Johnsson, S. C. Kim, G. H. Ko and D. Lenhert, "Measurement of Heat and Combustion Products in Reduced- scale Ventilation-limited Compartment Fires", NIST Technical Note 1483, NIST, Gaithersburg, MD (2007).
  3. C. H. Hwang, A. Lock, M. Bundy, E. Johnsson and G. H. Ko, "Effects of Fuel Location and Distribution on Full-scale Underventilated Com- partment Fires", Journal of Fire Science, Vol. 29, pp. 21-52 (2011). https://doi.org/10.1177/0734904110372119
  4. A. Lock, M. Bundy, E. L. Johnsson, A. Hamins, G. H. Ko, C. H. Hwang, P. Fuss and R. Harris, "Experimental Study of the Effects of Fuel Type, Fuel Distribution and Vent Size on Full-scale Underventilated Compartment Fires in an ISO 9705 Room", NIST TN 1603, NIST, Gaithersburg, MD (2008).
  5. K. McGrattan, S. Hostikka, J. Floyd, H. Baum and R. Rehm, "Fire Dynamic Simulator (Version 5): Technical Reference Guide", NIST SP 1018-5, NIST, Gaithersburg, MD (2007).
  6. C. H. Hwang, "Large Eddy Simulation of Turbulent Premixed Flames in a Practical Combustor", Ph.D. Dissertation, Inha University (2006).
  7. J. E. Floyd and K. B. McGrattan, "Extending the Mixture Fraction Concept to Address Under-Ventilated Fires", Fire Safety Journal, Vol. 44, pp. 291-300 (2009). https://doi.org/10.1016/j.firesaf.2008.07.002
  8. C. H. Hwang, C. H. Park, G. H. Ko and A. Lock, "Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS)", Journal of Korean Institute of Fire Science & Engineering, Vol. 24, No. 3, pp. 131-138 (2010).
  9. A. Y. Snegirev, G. M. Makhviladze, V. A. Talalov and A. V. Shamshin, "Turbulent Diffusion Combustion under Conditions of Limited Ventilation: Flame Projection through an Opening", Combustion, Explosion, & Shock Waves, Vol. 39, No. 1, pp. 1-10 (2003). https://doi.org/10.1023/A:1022189816023
  10. G. M. Makhviladze, A. V. Shamshin, S. E. Yakush and A. P. Zykov, "Experimental and Numerical Study of Transient Compartment Fires", Combustion, Explosion, & Shock Waves, Vol. 42, No. 6, pp. 723-730 (2006). https://doi.org/10.1007/s10573-006-0107-6
  11. A. Chen, J. Francis, X. Dong and W. Chen, "An Experimental Study of the Rate of Gas Temperature Rise in Enclosure Fires", Fire Safety Journal, Vol. 46, pp. 397-405 (2011). https://doi.org/10.1016/j.firesaf.2011.06.006
  12. C. H. Hwang, A. Lock, M. Bundy, E. Johnsson and G. H. Ko, "Studies on Fire Characteristics in Over- and Underventilated Full-Scale Compartments", Journal of Fire Science, Vol. 28, pp. 459-486 (2010). https://doi.org/10.1177/0734904110363106
  13. W. Mell, A. Maranghides, R. McDermott and S. L. Manzello, "Numerical Simulation and Experiments of Burning Douglas Fir Trees", Combustion and Flame, Vol. 156, pp. 2023-2041 (2009). https://doi.org/10.1016/j.combustflame.2009.06.015
  14. J. Smagorinsky, "General Circulation Experiments with the Primitive Equations", Monthly Weather Review, Vol. 91, No. 3, pp. 99-164 (1963). https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  15. G. D. Raithby and E. H. Chui, "A Finite-Volume Method for Predicting Radiant Heat Transfer in Enclosures with Participating Media", Journal of Heat Transfer, Vol. 112, No. 2, pp. 415-423 (1990). https://doi.org/10.1115/1.2910394
  16. K. McGrattan, "Verification & Validation of Selected Fire Models for Nuclear Power Plant Applications, Volume 7: Fire Dynamic Simulator (FDS)", Finial Report NUREG-1824, EPRI 1011999 (2007).
  17. S. B. Pope, "Turbulent Flows", Cambridge University Press (2000).
  18. A. Bounagui, N. Benichou, C. McCartney and A. Kashef, "Optimizing the Grid Size Used in CFD Simulations to Evaluate Fire Safety in Houses", In: 3rd NRC Symposium on Computational Fluid Dynamics, High Performance Computing and Virtual Reality, Ottawa (2003).
  19. K. McGrattan, J. Floyd, G. Forney, H. Baum and S. Hostikka, "Improved Radiation and Combustion Routines for a Large Eddy Simulation Fire Model", In: Fire Safety Science-Proceedings of the Seventh International Symposium, Worcester, MA, pp. 827-838 (2003).

피인용 문헌

  1. Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) vol.27, pp.2, 2013, https://doi.org/10.7731/KIFSE.2013.27.2.031