DOI QR코드

DOI QR Code

Difference in Physiological Responses to Environmental Stress in Protox Inhibitor Herbicide-Resistant Transgenic Rice and Non-transgenic Rice

Protox 저해형 제초제 저항성 형질전환벼와 비형질전환벼의 환경스트레스에 대한 생리적 반응 차이

  • Yun, Young-Beom (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University) ;
  • Kwon, Oh-Do (Jeonnam Agricultural Research and Extension Service) ;
  • Shin, Dong-Young (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University) ;
  • Hyun, Kyu-Hwan (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University) ;
  • Lee, Do-Jin (Department of Agricultural Education, Sunchon National University) ;
  • Jung, Ha-Il (Department of Crop and Soil Sciences, Cornell University) ;
  • Kuk, Yong-In (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University)
  • 윤영범 (순천대학교 생명산업과학대학 자원식물개발학과) ;
  • 권오도 (전남농업기술원 쌀연구소) ;
  • 신동영 (순천대학교 생명산업과학대학 자원식물개발학과) ;
  • 현규환 (순천대학교 생명산업과학대학 자원식물개발학과) ;
  • 이도진 (순천대학교 사범대학 농업교육과) ;
  • 정하일 (코넬대학교 작물 및 토양학과) ;
  • 국용인 (순천대학교 생명산업과학대학 자원식물개발학과)
  • Received : 2012.02.15
  • Accepted : 2012.03.20
  • Published : 2012.03.30

Abstract

The objective of this research was to confirm the difference in physiological responses to environmental stresses such as chilling, high temperature, NaCl, and chemical stress (paraquat) in Protox inhibitor resistant-transgenic rice (MX, PX, and AP37) and its non-transgenic counterpart (WT). Transgenic and non-transgenic rice plants were exposed to a chilling temperature of $5^{\circ}C$ for 1 day or a high temperature of $45^{\circ}C$ for 4 days and allowed to recover at $25^{\circ}C$ for 6 days after the chilling treatment or 8 days after the high temperature treatment. Leaf injury, shoot fresh weight, porphyrin biosynthesis substances, and chlorophyll content were investigated in transgenic and non-transgenic rice at 6 days after 0.5% and 1% NaCl treatments or at 5 days after 0~300 ${\mu}M$ paraquat treatments. No significant difference in leaf injury and shoot fresh weight were observed between transgenic and non-transgenic rice during chilling and recovery. Plant height and shoot fresh weight were also similar between transgenic and non-transgenic rice during the high temperature and recovery period (0~5 days). However, plant height and shoot fresh weight in transgenic rice line MX and PX were lower than in non-transgenic rice at 6 days for recovery. Leaf injury, chlorophyll, and Mg-Proto IX ME contents had no significant difference between transgenic rice and non-transgenic rice after NaCl treatment, but Proto IX content for AP37 and shoot fresh weight for PX and AP37 in 0.5% NaCl treatment were significantly reduced compared with non-transgenic rice. There was no difference in leaf injury and shoot fresh weight when comparing transgenic rice and non-transgenic rice after paraquat treatment. Although transgenic rice and non-transgenic rice showed a little difference at a particular measurement period in certain environmental stresses, there was generally no difference in physiological responses between transgenic rice and non-transgenic rice.

본 연구는 Protox 저해형 제초제 저항성인 형질전환벼 라인(MX, PX, AP37)과 비형질전환벼(WT)에서 저온, 고온, NaCl 및 chemical(paraquat) 스트레스에 대한 생리적 반응차이를 파악하기 위해 수행되었다. 형질전환벼와 비형질전환벼는 저온실험의 경우 $5^{\circ}C$에 1일 그리고 회복을 위해 $25^{\circ}C$에 6일 두었고, 고온 실험은 $45^{\circ}C$에 4일 그리고 회복을 위해 $25^{\circ}C$에 8일 두었다. 또한 0.5%와 1% NaCl 처리 후 6일간 그리고 ${0{\sim}300\mu}M$ paraquat 처리 후 5일간 형질전환벼와 비형질전환벼의 잎의 피해율, 지상부 생체중 및 생리적 반응(porphyrin 생합성 중간물질, 엽록소 함량)을 조사하였다. 형질전환벼 라인과 WT간에 잎 피해율 및 생제중은 저온처리와 저온처리 후 회복기간에는 유의적인 차이가 없었다. 한편 고온과 고온처리 후 회복 5일까지는 형질전환 라인과 WT간에 초장과 생체중에서 유의적인 차이가 없었으나 회복 6일째에 MX와 PX는 WT에 비해 초장 및 생체중의 감소가 컸다. NaCl 처리 후 잎의 피해율, 엽록소 함량 및 Mg-Proto IX ME 함량은 형질전환벼와 비형질전환벼간에 유의적인 차이가 없었으나 AP37의 Proto IX 함량과 PX와 AP37의 지상부 생체중은 0.5% NaCl 처리에서 WT에 비해 유의적으로 감소하였다. 그러나 paraquat 처리 후 잎의 피해율과 지상부 생체중의 변화는 형질전환벼와 비형질전환벼간에 유의적인 차이를 보이지 않았다. 비록 일부 환경스트레스의 일부 조사기간에서 형질전환벼와 비형질전환벼간에 다른 반응차이를 보였지만 일반적으로 형질전환벼와 비형질전환벼간에 환경스트레스에 유사한 반응차이를 보였다.

Keywords

References

  1. Ha, S. B., S. B. Lee, D. E. Lee, J. O. Guh, and K. Back. 2003. Transgenic rice plants expressing Bacillus subtilis protoporphyrinogen oxidase gene show low herbicide oxyfluorfen resistance. Biologia Plantarum 47:277-280.
  2. Ha, S. B., S. B. Lee, Y. Lee, K. Yang, N. Lee, S. M. Jang, J. S. Chung, S. Jung, Y. S. King, S. G. Wi, and K. Back. 2004. The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ. 27:79-88. https://doi.org/10.1046/j.0016-8025.2003.01127.x
  3. Heap, I. M. 2011. International survey of herbicide resistant weeds. www.weedscience.com.
  4. Hiscox, J. D. and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 57:1332-1334. https://doi.org/10.1139/b79-163
  5. Jeong, E. G., G. W. Yi, Y. J. Won, H. M. Park, N. S. Cheon, J. H. Choi, Y. C. Ku, C. D. Han, M. Y. Eun, T. S. Kim, and M. H. Nam. 2005. Agronomic characteristics of transgenic japonica rice "Milyang 204" with herbicide resistance gene (bar). Kor. J. Plant Biotechnol. 32:85-90. https://doi.org/10.5010/JPB.2005.32.2.085
  6. Jung, H. I., Y. I. Kuk, H. Y. Kim, K. Back, D. J. Lee, S. Lee, and N. R. Burgos. 2010. Resistance levels and fitness of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice in paddy fields. Field Crops Research 115:125-131. https://doi.org/10.1016/j.fcr.2009.10.010
  7. Jung, H. I., Y. I. Kuk, K. Back, and N. R. Burgos. 2008. Resistance pattern and antioxidant enzyme profiles of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice. Pestic. Biochem. Physiol. 91:53-65.
  8. Jung, S., Y. Lee, K. Yang, S. B. Lee, S. M. Jang, S. B. Ha, and K. Back. 2004. Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ. 27: 1436-1446. https://doi.org/10.1111/j.1365-3040.2004.01247.x
  9. Kim, K. M., Y. I. Kuk, W. Kim, K. Back, J. O. Guh, and M. S. Shin. 2006. Quality of rice lines transformed with Protox gene of Bacillus subtilis. Korean J. Breed. 38(1):44-50.
  10. Komives, T. and G. Gullner. 1994. Protoporphyrinogen IX-oxidizing activities involved in the mode of action of peroxidizing herbicides. J. Agric. Food Chem. 42:2610-2618. https://doi.org/10.1021/jf00047a044
  11. Kuk, Y. I., J. S. Shin, Y. B. Yun, and O. D. Kwon. 2010. Mechanism of growth inhibition in herbicideresistant transgenic rice overexpressing protoporphyrinogen oxidase (Protox) gene. Korean J. Weed Sc. 30(2):122-134. https://doi.org/10.5660/KJWS.2010.30.2.122
  12. Lee, Y., S. Jung, and K. Back. 2004. Expression of human protoporphyrinogen oxidase in transgenic rice induces both a photodynamic response and oxyfluorfen resistance. Pestic. Biochem. Physiol. 80:65-74. https://doi.org/10.1016/j.pestbp.2004.06.008
  13. Lermontova, I. and B. Grimm. 2000. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75-83. https://doi.org/10.1104/pp.122.1.75
  14. Li, X., X. Y. He, Y. B. Luo, G. Y. Xiao, X. B. Jiang, and K. L. Huang. 2008. Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart. J. of Food Composition and Analysis. 21: 535-539. https://doi.org/10.1016/j.jfca.2008.06.001
  15. Oberdoerfer, R. B., R. D. Shillito, M. De Beuckeleer, and D. H. Mitten. 2005. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J. Agric. Food Chem. 53:1457-1465. https://doi.org/10.1021/jf0486500
  16. [SAS] Statistical Analysis System. 2000. SAS/STAT Users Guide, Version 7. Cary, NC:Statistical Analysis Systems Institute, Electronic Version.
  17. Scalla, R. and M. Matringe. 1994. Inhibitors of protoporphyrinogen oxidase as herbicides: diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6:103-132.
  18. Shin, J. S., K. M. Kim, D. J. Lee, S. B. Lee, N. R. Burgos, and Y. I. Kuk. 2011. Resistance levels and fitness of glufosinate-resistant transgenic sweet potato in field experiments. Field Crops Research. 121:324-332. https://doi.org/10.1016/j.fcr.2010.12.020
  19. Yun, Y. B., O. D. Kwon, D. J. Lee, and Y. I. Kuk. 2012. Difference in rice quality and physiochemical component between Protox inhibitorherbicide resistant transgenic rice and its nontransgenic counterpart. Korean J. Weed Sci. 32: 25-34. https://doi.org/10.5660/KJWS.2012.32.1.25