DOI QR코드

DOI QR Code

Effects of Lactobacillus plantarum CIB 001 on Lipid Metabolism of Hypercholesterolemic Rats

김치에서 분리한 Lactobacillus plantarum CIB 001 급여가 고콜레스테롤혈증 흰쥐의 지질대사에 미치는 영향

  • Cha, Sang-Do (Biomaterials Research Center, Cellinbio) ;
  • Yu, Ji-Won (Biomaterials Research Center, Cellinbio) ;
  • Kim, Tae-Woon (R&D Division, World Institute of Kimchi) ;
  • Cho, Ho-Seong (College of Veterinary Medicine and Veterinary Diagnostic Center, Chonbuk National University) ;
  • Lee, Dong-Hee (Biomaterials Research Center, Cellinbio)
  • 차상도 ((주)셀인바이오 생물소재연구소) ;
  • 유지원 ((주)셀인바이오 생물소재연구소) ;
  • 김태운 (세계김치연구소 R&D본부) ;
  • 조호성 (전북대학교 수의학과) ;
  • 이동희 ((주)셀인바이오 생물소재연구소)
  • Received : 2011.12.20
  • Accepted : 2012.04.17
  • Published : 2012.06.30

Abstract

The aim of the present study was to assess the anti-hypercholesterolemic effect of bile salt hydrolase-producing Lactobacillus plantarum CIB 001 (KCTC 11717 bp) in rats fed a high-cholesterol diet. Four treatment groups of rats (n=5) were fed experimental diets: a normal diet (ND), a ND plus L. plantarum CIB 001(NDL) at $5.0-7.5{\times}10^9$ colony forming unit (CFU)/day, a high-cholesterol diet (HCD), as well as a HCD plus L. plantarum CIB 001 (HCDL) at $5.0-7.5{\times}10^9$ CFU/day for 6 weeks. Compared with the HCD group, the HCDL group demonstrated a decrease in serum triglyceride (p<0.05), total cholesterol (p<0.05), and the corresponding HDL-cholesterol concentration increased at a rate of 40% (p<0.05). The HCDL group also induced a decrease in liver inflammation and steatosis. The present results suggest that supplementation of L. plantarum CIB 001 can have short-term (6 weeks) effects on blood lipids and liver injury, as well as on the atherogenic index and cardiac risk factors.

김치유산균인 L. plantarum CIB 001(KCTC 11717 bp)을 고콜레스테롤을 식이를 섭취시킨 흰쥐에게 급여하여 혈청 지질 성상 및 간 조직의 변화를 살펴보았다. 4주간의 실험식이로 고콜레스테롤 유도한 후, 6주간 고콜레스테롤 식이와 함께 CIB 001 유산균을 $5.0-7.5{\times}10^9$ CFU/day 수준으로 급여한 결과 총 콜레스테롤을 HCD군에 비해 약 30% 정도 유의하게 감소시켰고 중성지방을 약 32% 정도 유의하게 감소시켰다. HDL-콜레스테롤에 있어서는 HCD군에 비해 CIB 001를 급여한 군(HCDL)이 약 40% 유의적으로 증가하였고, LDL-콜레스테롤은 감소하는 경향을 보였으나 표준편차가 커서 유의성이 없었다. 동맥경화지수(AI)와 심장위험인자(CRF)를 비교하였을 때, HCD군에 비하여 HCDL군에서 AI가 약 6배 유의하게 낮아졌고 CRF도 약 1.9배 유의적으로 낮아졌다. 또한, 간 조직을 관찰한 결과, 고콜레스테롤 식이에 의해 유발된 지방 변성과 손상의 경우 HCDL군에서 중심정맥을 중심으로 정상 모양의 재생과 지방 변성을 감소시키는 것이 관찰되었다. 따라서 CIB 001의 투여가 콜레스테롤 과잉혈증 상태에서 높아진 혈장 지질을 저하시키고 간 기능을 개선시켰으며 동맥경화와 심장질환의 가능성을 감소시키는 것으로 나타냈다.

Keywords

References

  1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigo J, Lisheng A. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (The INTERHEART Study): Case-control study. Lancet 364: 937-952 (2004) https://doi.org/10.1016/S0140-6736(04)17018-9
  2. WHO. Diet, nutritional, and prevention of chronic diseases: Report of a joint WHO/FAO expert concultation. World Health Organization, Geneva, Switzerland (2003)
  3. Anderson JW, Jones AE, Riddell-Mason S. Ten different dietary fibers have significantly different effects on serum and liver lipids of cholesterol-fed rats. J. Nutr. 124: 78-83 (1994) https://doi.org/10.1093/jn/124.1.78
  4. Tinker LF, Davis PA, Schneeman BO. Prune fiber or pectin compared with cellulose lowers plasma and liver lipids in rats with diet-induced hyperlipidemia. J. Nutr. 124: 31-40 (1994) https://doi.org/10.1093/jn/124.1.31
  5. Tsai AC, Elias J, Kelly JJ, Lin RSC, Robson JRK. Influence of certain dietary fibers on serum and tissue cholesterol levels in rats. J. Nutr. 106: 118-123 (1976) https://doi.org/10.1093/jn/106.1.118
  6. Cho YS, Shon MY, Lee MK. Lipid lowering action of powder and water extract of mulberry leaves in C57BL/6 mice fed high fat diet. J. Korean Soc. Food Sci. Nutr. 36: 406-410 (2007) https://doi.org/10.3746/jkfn.2007.36.4.405
  7. Jung YH, Han SH, Shin MK. Effects of green and black Korean teas on lipid metabolism in diet-induced hyperlipidemic rats. J. East Asian Soc. Dietary Life 16: 550-558 (2006)
  8. Kim DW, Yang DH, Kim SY, Kim KS, Chung MG, Kang SM. Hypocholesterolemic effect of lyyphilized, heat-killed Lactobacillus rhamnosus and Lactobacillus plantarum. Korean J. Microbiol. Biotechnol. 37: 69-74 (2009)
  9. Kwon JY, Cheigh HS, Song YO. Weight reduction and lipid lowering effects of kimchi lactic acid powder in rats fed high fat diets. Korean J. Food Sci. Technol. 36: 1014-1019 (2004)
  10. Moon JH, Sung JH, Choi IW, Kim YS. Anti-obesity and hypolopidemic activity of taro powder in mice fed with high fat and cholesterol diets. Korean J. Food Sci. Technol. 42: 620-626 (2010)
  11. Park JE, Kee HJ, Cha YS. Effect of Stevia rebaudiana bertoni leaf extract on antiobesity in C57BL/6J mice. Korean J. Food Sci. Technol. 42: 586-592 (2010)
  12. Yun YP, Kang WS, Lee MY. The antithrombotic effects of green tea catechine. J. Food Hyg. Safety 11: 77-82 (1996)
  13. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. Functional role of type I and type II interferons in antiviral defense. Science 264: 1918-1921 (1994) https://doi.org/10.1126/science.8009221
  14. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SY. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. P. Natl. Acad. Sci. USA 107: 2159-2164 (2010) https://doi.org/10.1073/pnas.0904055107
  15. Fukushima M, Nakano M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterol-enriched diet. Brit. J. Nutr. 76: 857-867 (1996) https://doi.org/10.1079/BJN19960092
  16. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microb. 49: 377-381 (1985)
  17. Christiaens HR, Leer J, Pouwels PH, Verstraete W. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microb. 58: 3792-3798 (1992)
  18. Dashkevicz MP, Feighner SD. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microb. 55: 11-16 (1989)
  19. Lin MY, Chen TW. Reduction of cholesterol by Lactobacillus acidophilus in culture broth. J. Food Drug Anal. 8: 113-118 (2000)
  20. Cha SD, Kim TW, Lee DH. Isolation and identification of Lactobacillus plantarum CIB 001 with bile salt aeconjugation activity from kimchi. Korean J. Microbiol. Biotechnol. 38: 222-226 (2010)
  21. Mitchell GV, Jenkins MY, Grundel E. Protein efficiency ratios and net protein ratios of selected protein foods. Plant Foods Hum. Nutr. 39: 53-58 (1989) https://doi.org/10.1007/BF01092401
  22. Yang JL, Lee SH, Song YS. Improving effect of powders of cooked soybean and cheonggukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. J. Korean Soc. Food Sci. Nutr. 32: 899-905 (2003) https://doi.org/10.3746/jkfn.2003.32.6.899
  23. Jung HK, Kim ER, Yae HS, Choi SJ, Jung JY, Juhn SL. Cholesterol-lowering effect of lactic acid bacteria and fermented milks as probiotics fucntional foods. Food Ind. Nutr. 5: 29-35 (2000)
  24. Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. P. Natl. Acad. Sci. USA 105: 13580-13585 (2008) https://doi.org/10.1073/pnas.0804437105
  25. Ramasamy K, Abdullah N, Wong M, Karuthand C, Ho YW. Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens. J. Sci. Food Agr. 90: 65-69 (2010) https://doi.org/10.1002/jsfa.3780
  26. Tanaka H, Doesburg K, Iwasaki T, Mierau I. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530-2535 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75506-2
  27. Klaver FAM, van der Meer R. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microb. 59: 1120-1124 (1993)
  28. Sadzikowski MR, Sperry JF, Silkins TD. Cholesterol-reducing bacterium from human feces. Appl. Environ Microb. 34: 355-362 (1977)
  29. Harrison VC, Peat G. Serum cholesterol and bowl flora in the newborn. Am. J. Clin. Nutr. 28: 1351-1355 (1975) https://doi.org/10.1093/ajcn/28.12.1351
  30. Kumar R, Grover S, Batish VK. Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats. Brit. J. Nutr. 105: 561-573 (2011) https://doi.org/10.1017/S0007114510003740
  31. Karlsson CLJ, Molin G, Fak G, Hagsalatt MLJ, Jakesevic M, Hakansson A, Jeppsson B, Westrom B, Ahrne S. Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dence diet from fetal life through to 6 months of age. Brit. J. Nutr. 106: 887-895 (2011) https://doi.org/10.1017/S0007114511001036
  32. Rasic JL, Vujicic IF, Skrinjar M, Vulic M. Assimilation of cholesterol by some cultures of lactic acid bacteria and bifidobacteria. Biotechnol. Lett. 14: 39-44 (1992) https://doi.org/10.1007/BF01030911
  33. Tahri K, Crociani J, Ballongue J, Schneider F. Effects of three strains of bifidobacteria on cholesterol. Lett. Appl. Microbiol. 21: 149-151 (1995) https://doi.org/10.1111/j.1472-765X.1995.tb01028.x
  34. Tahri K, Grill JP, Schneider F. Bifidobacteria strain behavior toward cholesterol: Coprecipitation with bile salts and assimilation. Curr. Microbiol. 33: 187-193 (1996) https://doi.org/10.1007/s002849900098
  35. Venter CS, Vorster HH, Vander Nest DG. Comparison between phisiological effect of konjac-glucomannan and propionate in baboons fed "western" diet. J. Nutr. 120: 1046-1050 (1990) https://doi.org/10.1093/jn/120.9.1046
  36. Rose R. The pathogenesis of atherosclerosis an update. New Engl. J. Med. 314: 488-494 (1983)
  37. Tall AR. Plasma high density lipoproteins metabolism and relationship to asherogenesis. J. Clin. Invest. 86: 379-384 (1990) https://doi.org/10.1172/JCI114722
  38. Jeun J, Kim SY, Cho SY, Jun HJ, Park HJ, Seo JG, Chung MJ, Lee SJ. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 26: 321-330 (2010) https://doi.org/10.1016/j.nut.2009.04.011
  39. Rosenfeld L. Lipoprotein analysis: Early methods in the diagnosis of atherosclerosis.Arch. Pathol. Lab. Med. 113: 1101-1110 (1989)

Cited by

  1. Quality characteristics and processing of rice cake (Backsulgi) with rice flour containing Lactobacillus plantarum CGKW3 by spray-drying vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.953
  2. Effects of Kimchi Powder or Lactobacillus plantarum Added Fermented Sausages on Serum Lipid and Cholesterol Levels in Rats vol.33, pp.4, 2013, https://doi.org/10.5851/kosfa.2013.33.4.435
  3. Effect of Mixture of Lactobacillus plantarum CECT 7527, 7528, and 7529 on Obesity and Lipid Metabolism in Rats Fed a High-fat Diet vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1484
  4. Repeated-dose oral toxicity study of crude antifungal compounds produced by Lactobacillus plantarum AF1 in rats vol.20, pp.3, 2013, https://doi.org/10.11002/kjfp.2013.20.3.394
  5. Four-Week Repeated Oral Toxicity Study of Leuconostoc citreum GR1 in Rats vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.600
  6. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.1