DOI QR코드

DOI QR Code

메주에서 분리한 Bacillus polyfermenticus CJ6가 생산하는 항진균 물질의 분리 및 특성

Isolation and Characterization of Antifungal Compounds Produced by Bacillus polyfermenticus CJ6 Isolated from Meju

  • 양은주 (조선대학교 식품영양학과.김치연구센터) ;
  • 마승진 (목포대학교 식품공학과) ;
  • 장해춘 (조선대학교 식품영양학과.김치연구센터)
  • Yang, Eun-Ju (Department of Food and Nutrition, Kimchi Research Center, Chosun University) ;
  • Ma, Seung-Jin (Department of Food Engineering, Mokpo National University) ;
  • Chang, Hae-Choon (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
  • 투고 : 2012.03.05
  • 심사 : 2012.03.13
  • 발행 : 2012.03.28

초록

B. polyfermenticus CJ6가 생산하는 항진균 물질을 분리 정제하기 위하여 SPE, preparative HPLC, reverse phase-HPLC를 통한 정제를 시행하였다. Preparative HPLC로부터8, B, C의 3개의 항진균 활성 분획을 분리하였으며, LC/MS분석 결과 B. polyfermenticus CJ6는 2종의 iturin A($C_{14}$, $C_{15}$), 3종의 surfactin($C_{13}$, $C_{14}$, $C_{15}$), 4종의 fengycin A($C_{14}$, $C_{15}$, $C_{16}$, $C_{17}$)와 2종의 fengycin B($C_{16}$, $C_{17}$)를 생산하는 것으로 추정되었다. 분리된 항진균 활성 분획의 안정성 실험을 결과 iturin을 함유한 8번 분획은 pH, 열, 효소처리에 안정하였으나 50-$70^{\circ}C$에서 24시간 처리 시에는 항진균 활성이 다소 감소되었다. Surfactins과 fengycins을 포함하는 것으로 추정되는 B 분획은 온도에는 매우 안정하나 pH 3.0과 protease(type I) 및 ${\alpha}$-chymotrypsin 처리에 의하여 항진균활성이 감소되었다. Fengycins 만을 함유한 C 분획은 열과 pH 처리에서 모두 안정하였으나 protease(type I) 처리에 의하여 활성이 감소되었다. 항진균 활성 8번 분획은 reversephase-HPLC를 통하여 2개의 단일 피크가 분리되었으며, 아미노산 조성 분석 결과 Asx, Tyr, Gln, Pro, Ser의 분자비가 3:1:1:1:1으로서 iturin A의 아미노산 서열과 일치하는 것으로 확인되었다. 본 연구를 통하여 B. polyfermenticus CJ6는다양한 항진균 활성 lipopeptides를 생산하는 것을 알 수 있으며, 항진균 활성이 우수한 B. polyfermenticus CJ6 균주의 생물방제 및 생물보존제로서의 활용이 기대된다.

Antifungal compounds from Bacillus polyfermenticus CJ6 were purified using SPE, preparative HPLC, and reverse phase-HPLC. Antifungal compounds from B. polyfermenticus CJ6 were separated into three fractions (8, B, C) using preparative HPLC. LC/MS analysis of antifungal peaks suggested that B. polyfermenticus CJ6 produces lipopeptides; two kinds of iturin A ($C_{14}$, $C_{15}$), three kinds of surfactins ($C_{13}$, $C_{14}$, $C_{15}$), four kinds of fengycin A ($C_{14}$, $C_{15}$, $C_{16}$, $C_{17}$) and two kinds fengycin B ($C_{16}$, $C_{17}$). The antifungal activity of fraction 8, which was presumed as inturin A, was found to be stable after the pH, heat or proteolytic enzyme treatment, but it was unstable at 50-$70^{\circ}C$ for 24 hr. The antifungal activity of fraction B, which presumed as surfactins and fengycin A, was found to be stable after the heat treatment, but it was unstable in the pH 3.0 and after the protease (type I) or ${\alpha}$-chymotrypsin treatment. The antifungal activity of fraction C, which was presumed as fengycin A and B, was found to be stable in the pH 3.0-9.0 range and the heat treatment, but it was unstable with the treatment of protease (type I). The amino acid composition of the purified peaks 8-1 and 8-2 were Asx, Tyr, Gln, Pro, and Ser in a molar ratio of 3:1:1:1:1, which showed the same amino acid composition as iturin. From these results, we confirmed that antifungal compounds from B. polyfermenticus CJ6 most likely belonged to iturin A as well as surfactins and fengycins. As lipopeptides are known to act in a synergistic manner, the antifungal compounds from B. polyfermenticus CJ6 might have potential uses in biotechnology and biopharmaceutical applications.

키워드

참고문헌

  1. Akpa, E., P. Jacques, B. wathelet, M. Paquot, R. Fuchs, H. Budzikiewiez, and P. Thonart. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91: 551-561.
  2. Arguelles-Arias, A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris, and P. Fickers. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63.
  3. Athukorala, S. N. P., W. G. D. Fernando, and K. Y. Rashild. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55: 1021-1032.
  4. Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P., Yu, Z. L., 2008. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtillis. Lett. Appl. Microbiol. 47: 180-186.
  5. Chitarra, G. S., P. Breeuwer, M. J. R. Nout, A. C. van Aelst, F. M. Rombouts, and T. Abee. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-168.
  6. FAO(Food and Agriculture Organisation). 2011. Global food Losses and Food Waste. http://www.fao.org/fileadmin/user_upload/ags/publications/GFL_web.pdf
  7. Grangemard, I., J. Wallach, and F. Peypoux. 1999. Evidence of surfactin hydrolysis by a bacterial endoprotease. Biotechnol. Lett. 21: 241-244.
  8. Grover, M., L. Nain, S. B. singh, and A. K. Saxena. 2010. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr. Microbiol. 60: 99-106.
  9. Hoover, D. G. and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp. 23-29. In D. G. Hoover and L. R. Steenson (ed.), Bacteriocin of lactic acid bacteria. Academic Press, San Diego, CA.
  10. Im, E., Y. J. Choi, C. H. Kim, C. Fiocchi, C. Pothoulakis, and S. H. Rhee. 2009. The angiogenic effect of probiotic Bacillus polyfermenticus on human intestinal microvascular endothelial cells is mediated by IL-8. Am. J. Physiol. Gastrointest. Liver Physiol. 297: G999-G1008.
  11. Jung, J. H. and H. C. Chang. 2009. Antifungal activity of Bacillus polyfermenticus CJ6 isolated from meju. J. Korean Soc. Food Sci. Nutr. 38: 509-516.
  12. Jung, J. H. and H. C. Chang. 2009. Bacillus polyfermenticus CJ9, isolated from meju, showing antifungal and antibacterial activities. Kor. J. Microbiol. Biotechnol. 37: 340-349.
  13. Kim, D. H., H. K. Kim, K. M. Kim, C. K. Kim, M. H. Jeong, C. Y. Ko, K. H. Moon, and J. S. Kang. 2011. Antibacterial activities of macrolactin A and 7-O-succinyl mactolactin A from Bacillus polyfermenticus KJS-2 against vancomycinresistant Enterococci and methicillin-resistant Staphylococcus aureus. Arch. Pharm. Res. 34: 147-152.
  14. Kim, H. S., H. Park, I. Y. Cho, H. D. Paik, and E. Park. 2006. Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J. Med. Food 9: 321-327.
  15. Kim, H. Y. and T. S. Lee. 2009. Toxicity and characteristics of antifungal substances produced by Bacillus amyloliquefaciens IUB158-03. J. Life Sci. 19: 1672-1678.
  16. Kim, K. M., J. Y. Lee, C. K. Kim, and J. S. Kang. 2009. Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res. 32: 711-715.
  17. Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. -T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Applied. Microbiol. 97: 942-949.
  18. Kim, P. I., Ryu, J., Kim, Y. H., Chi, Y. T., 2010. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtillis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145
  19. Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151.
  20. Ma, E. L., Y. J. Choi, J. Choi, C. Pothoulakis, S. H. Rhee, and E. Im. 2010. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int. J. Cancer 127: 780-790.
  21. Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.
  22. McGrath, M. T. 2001. Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Dis. 85: 236-245.
  23. Nagorska, K., M. Bikowski, and M. Obuchowski. 2007. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol. 54: 495-508.
  24. Nihorimbere, V., H. Cawoy, A. Seyer, A. Brunelle, P. Thonart, and M. Ongena. 2011. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79: 176-191.
  25. Ongena M, E. Jourdan, A. Adam, M. Paquot, A. Brans, B. Joris, J. L. Arpigny, P. Thonart. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
  26. Ongena, M. and P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
  27. Paulitz, T. C. and R. R. Bélanger. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39: 103-133.
  28. Peypoux, F., J. M. Bonmatin, and J. Wallach. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553-563.
  29. Pitt, J. I. and A. D. Hocking. 1999. Fungi and Food Spoilage. Aspen Publishers, Gaithersburg, MD, USA.
  30. Ryoo, S. W., H. Y. Maeng, and P. J. Maeng. 1996. Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1. Kor. J. Mycol. 24: 293-304.
  31. Schallmey, M., A. Singh, and O. P. Ward. 2004. Development in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
  32. Sharma, R. R., D. Singh, and R. Singh. 2009. Biological control of postharvest diseases on fruits and vegetables by microbial antagonists: a review. Biol. Control 50: 205-221.
  33. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
  34. Williams, B. H., Y. Hathout, and C. Fenselau. 2002. Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J. Mass. Spectrom. 37: 259-264.
  35. Yang, E. J. and H. C. Chang. 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechnol. 35: 339-346.

피인용 문헌

  1. 국산 발효식품 추출물과 발효식품유래 미생물을 활용한 벼 종자전염성 진균병 방제 vol.18, pp.4, 2014, https://doi.org/10.7585/kjps.2014.18.4.383