DOI QR코드

DOI QR Code

Effects of Fractions from Benincasa hispida on Inhibition of Adipogenesis in 3T3-L1 Preadipocytes

동과 분획물이 3T3-L1 지방세포 분화 억제에 미치는 영향

  • You, Yang-Hee (Dept. Food and Nutrition, and Human Ecology Research Institute, Chonnam National University) ;
  • Jun, Woo-Jin (Dept. Food and Nutrition, and Human Ecology Research Institute, Chonnam National University)
  • 유양희 (전남대학교 식품영양학과, 생활과학연구소) ;
  • 전우진 (전남대학교 식품영양학과, 생활과학연구소)
  • Received : 2012.05.02
  • Accepted : 2012.06.02
  • Published : 2012.07.31

Abstract

The effects of three fractions, hexane (BHHH), chloroform (BHHC), and ethyl acetate (BHHE), from water extract of Benincasa hispida on the underlying mechanisms of adipogenesis were investigated in 3T3-L1 cells. Intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to control, lipid accumulation significantly decreased by 11% and 13% upon treatment with BHHC and BHHE, respectively at a concentration of 50 ${\mu}g/mL$. Intracellular triglyceride (TG) levels were also reduced by 21% and 16%, respectively, at the same concentration. To determine the mechanism behind the reductions in TG content and lipid accumulation, glycerol release and expression levels of adipogenic marker genes were measured. The levels of free glycerol released into culture medium increased by 13% and 17% upon treatment with BHHC and BHHE, respectively. In subsequent measurements using real-time polymerization chain reaction, the mRNA levels of $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin significantly decreased upon treatment with BHHE (45%, 67%, and 35%) in comparison with non-treated control. These results suggest that BHHE inhibits adipocyte differentiation by blocking $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin gene expression in 3T3-L1 cells, resulting in reduced lipid accumulation, increased glycerol release, and intracellular triglycerides.

본 연구에서 동과 물추출물의 계통분획을 통해 획득된 세가지 분획물인 핵산 분획(BHHH), 클로로포름 분획(BHHC), 에틸아세테이트 분획(BHHE)들을 3T3-L1 분화과정 중에 처리한 후, Oil Red O 염색법에 의한 lipid accumulation, 지방구내 triglyceride 함량을 평가하고, free glycerol release 함량과 adipogenesis와 관련된 transcription factor들의 발현 함량을 비교하여 동과 물추출물 중 anti-adipogenesis 활성 분획물을 밝히고, 이 분획물의 작용 메커니즘을 규명하고자 하였다. 50 ${\mu}g/mL$ 농도의 BHHC와 BHHE의 처리는 분화된 지방세포 내 지질 축척을 11%와 13%로 낮추었다. 지방세포 내 중성지방(TG)의 함량은 동일 농도의 각 분획물에서 21%와 16%로 낮게 나타났다. TG 함량의 감소와 지방구내 지질 축적의 감소, 즉 anti-adipogenesis 메커니즘을 밝히기 위해 free glycerol 분비량을 평가하였다. 동일 농도의 BHHC와 BHHE에서 각각 13%와 17% 감소되어 나타났다. BHHC와 BHHE는 세포가 분화하는 동안 $PPAR{\gamma}$, C/$EBP{\alpha}$, leptin의 mRNA 발현을 억제하는 것으로 나타났다. 특히 BHHE의 경우 각 transcriptional factor들의 발현을 45%, 67%, 35%로 현저히 억제시키는 우수한 anti-adipogenetic 소재로 나타났다. 이에 BHHE는 항비만 기능성 소재로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Spiegelman BM, Flier S. 1996. Adipogenesis and obesity; rounding out the big picture. Cell 87: 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  2. Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643. https://doi.org/10.1038/35007508
  3. Visscher TL. 2001. The public health impact of obesity. Annu Rev Publ Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  4. Cha SY, Jang JY, Lee YH, Lee GY, Lee HJ, Hwang KT, Kim YJ, Jun YJ, Lee JM. 2010. Lipolytic effect of methanol extracts from Luffa cylindrica in mature 3T3-L1 adipocytes. J Korean Soc Food Sci Nutr 39: 813-819. https://doi.org/10.3746/jkfn.2010.39.6.813
  5. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. 2003. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 27: 875-888. https://doi.org/10.1038/sj.ijo.0802326
  6. Aihaud G, Grimaldu P, Negrel R. 1992. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12: 207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  7. Boney CM, Staats BM, Atiles AD, Dercole AJ. 1994. Expression on insulin-like growth factor-I(IGF-I) and IGF-binding proteins during adipogenesis. Endocrinology 135: 1863-1868. https://doi.org/10.1210/en.135.5.1863
  8. Choi JH, Rhim CH, Kim JY, Yang JS, Choi JS, Byun DS. 1986. Basic studies on the development of diet for the treatment of obesity in the inhibitory effect of alginic acid as a diet fiber on obesity. J Kor Fish Soc 19: 303-311.
  9. Sato M, Hiragun A, Mitsui H. 1980. Preadipocytes possess cellular retinoid binding proteins and their differentiation is inhibited by retinoids. Biochem Biophys Res Commun 95: 1839-1845. https://doi.org/10.1016/S0006-291X(80)80113-6
  10. Kawada T, Aoki N, Kamei Y, Maeshige K, Nishiu S, Sugimoto E. 1990. Comparative investigation of vitamins and their analogues on terminal differentiation from preadipocytes to adipocytes of 3T3-L1 cells. Comp Biochem Physiol 96: 323-326. https://doi.org/10.1016/0300-9629(90)90699-S
  11. Cno M, Aratani Y, Kitagawa I, Kitagawa Y. 1990. Ascorbic acid phosphate stimulate type IV collagen synthesis and accelerate adipose conversion of 3T3-L1 cells. Exp Cell Res 187: 309-314. https://doi.org/10.1016/0014-4827(90)90096-S
  12. Harrison SA, Buxtaon JM, Clancy BM, Czech MP. 1991. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem 266: 19438-19449.
  13. Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  14. Rosen ED, Hsu CH, Wang X, Sakai X, Freeman MW, Gonzalez FJ, Spiegelman BM. 2001. C/EBP$\alpha$ induces adipogenesis through PPAR: a unified pathway. Genes Dev 16: 22-26.
  15. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130: 3116-3121. https://doi.org/10.1093/jn/130.12.3116S
  16. Rosen ED, Macdougald OA. 2006. Adipocyte differentiation from the in side out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  17. Lim SJ, Jeong JG, Kim MW, Choi SS, Han HK, Park JE. 2003. Effects of Benincasa hispida intake blood glucose and lipid level in streptozotocin induced diabetic rats. Kor J Nutr 36: 335-343.
  18. Huh J. 1994. The handbook of oriental medicine. Namsandong, Daegu, Korea. p 1170.
  19. Warier PK. 1994. Indian medicinal plants. Orient longman limited, Delhi, India. p 261.
  20. Sharma LK. 1984. Food medicines. Practical nature cure. Natural Care Publishing House, Pudukkottai, India. p 169.
  21. Lee JM, Yoon HK, Lee YH, Park JJ, You YH, Jang JY, Yang JW, Jun WJ. 2010. The potential effects of ethyl acetate fraction from Curcuma longa L. on lipolysis in differentiated 3T3-L1 adipocytes. J Med Food 13:1-7. https://doi.org/10.1089/jmf.2009.1276
  22. Jeong HJ, Yoon SJ, Pyun YR. 2008. Polysaccharides from edile mushroom Hinmogi (Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocyte reducing mRNA expression of PPAR$\gamma$, CEPB$\alpha$, and leptin. Food Sci Biotechnol 17: 267-273.
  23. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. 2001. An extract of Lagerstroemia speciosa L has insulin-like glucose uptake stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr 131: 2242-2247. https://doi.org/10.1093/jn/131.9.2242
  24. Rosen ED, Walkey CJ, Ouigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes & Dev 14: 1293-1307.
  25. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawda T, Lim BU, Ki D. 2004. Red yeast rice extract suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75: 31945-3203.
  26. Cowherd RM, Lyle RE, McGehee Jr RE. 1999. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 10: 3-10. https://doi.org/10.1006/scdb.1998.0276
  27. Cornelius P, Mac Dougald OA, Lane MD. 1994. Regulation of adipocyte development. Annu Rev Nutr 14: 99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
  28. Gustafson B, Jack MM, Cushman SW, Smith U. 2005. Adiponectin gene activation by thiazolidinediones requires PPAR gamma 2, but not CEBP alpha-evidence for differential regulation of the aP2 and adiponectin genes. Biochem Biophys Res Commun 308: 933-939.
  29. Hsu CL, Yen GC. 2007. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocyte. J Agric Food Chem 55: 8404-8410. https://doi.org/10.1021/jf071695r

Cited by

  1. Potential of Fisetin as a Nutri-cosmetics Material through Evaluating Anti-oxidant and Anti-adipogenic Activities vol.14, pp.1, 2016, https://doi.org/10.20402/ajbc.2016.0003
  2. Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1681
  3. Radical Scavenging and Anti-Obesity Effects of 50% Ethanol Extract from Fermented Curcuma longa L. vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.281
  4. Anti-obesity Effects of Extracts from Young Akebia quinata D. Leaves vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.200
  5. 동과추출물이 흰쥐의 기관·기관지 내 점액분비에 미치는 영향 vol.30, pp.5, 2012, https://doi.org/10.15188/kjopp.2016.10.30.5.314
  6. A Literature-Based Update on Benincasa hispida (Thunb.) Cogn.: Traditional Uses, Nutraceutical, and Phytopharmacological Profiles vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/6349041