DOI QR코드

DOI QR Code

Optimal Culturing and Enhancement of Lipid Accumulation in a Microalga Botryococcus braunii

미세조류 Botryococcus braunii의 배양조건 최적화 및 지질축적 향상

  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Lee, Eun-Mi (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Cho, Dae-Chul (Department of Energy & Environmental Engineering, Soonchunhyang University)
  • 권성현 (경상대학교 해양과학대학 해양환경공학과) ;
  • 이은미 (순천향대학교 에너지환경공학과) ;
  • 조대철 (순천향대학교 에너지환경공학과)
  • Received : 2012.01.02
  • Accepted : 2012.07.09
  • Published : 2012.07.31

Abstract

Several tests and experimental work have been done for identifying the best growth conditions and accumulated amount of lipid moiety in B. braunii, a microalga(UTEX 572) in terms of media composition. The specific growth rate was found to be the highest at 0.15 g/L-day when the phosphorus concentration was doubled with the other ingredients at the normal level. Experiments for varied media compositions revealed that the accumulation of lipid was the highest at 48% (dry cell weight based) in the nitrogen deficient medium and its corresponding specific growth rate was comparative to that in the normal BG 11 medium. In the bubble column experiments, carbon dioxide containing air produced four times more cell mass than air only. Light and glucose addition also enhanced cell mass with maximum, 1.8 g/L and accordingly 42% of lipid composition, which turned out to be a better strategy for higher lipid-producing microalgal culture.

Keywords

References

  1. 오희목, 김정석, 이석준, 1998, 미세조류에 의한 지구온난화기체의 고정화, Korean J. Environ. Biol., 16(4), 291-297.
  2. Bajpai, P., Bajpai, P. K., 1993, Eicosapentaenoic acid (EPA) production from microorganisms: a review, Journal of biotechnology, 30(2), 161-183. https://doi.org/10.1016/0168-1656(93)90111-Y
  3. Belarbi, E. -H., Molina, G. E., Chisti, Y., 2006, A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil, Enzyme Microbiol. Technol., 26, 516-529.
  4. Chisti, Y., 2007, Diesel from microalgae, Biotechnology Advances, 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  5. Dijkstra, A. J., 2006, Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils, Eur. J. Lipid Sci. Technol., 108(3), 249-264. https://doi.org/10.1002/ejlt.200500335
  6. Endo, H., Hosoya, H., Koibuchi, T., 1977, Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate. J. Ferment. Technol., 55, 369-370.
  7. Grima, E. M., Camacho, F. G., Perez, J. A. S., 1994, Biochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Tetraselmis sp. as a function of incident light intensity, Process Biochemistry, 29(2), 119-126. https://doi.org/10.1016/0032-9592(94)80004-9
  8. Kenyon, C. N., Rippka, R., Stanier, R. Y., 1972, Fatty acid composition and physiological properties of some filamentous blue-green algae, Archiv für Mikrobiologie, 83(3), 216-236. https://doi.org/10.1007/BF00645123
  9. Kosaric, N., Velikonja, J., 1995, Liquid and gaseous fuels from biotechnology: Challenge and opportunities, FEMS Microbiol. Rev., 16, 111-142. https://doi.org/10.1111/j.1574-6976.1995.tb00161.x
  10. Lee, S. J., Kim, S. B., Kim, J. E., Kwon, G. S., Yoon, B. D., Oh, H. M., 1998, Effects of harvesting time and growth stage on the flocculation of the green alga Botryococcus braunii, Lett. Appl. Microbiol., 27, 14-18. https://doi.org/10.1046/j.1472-765X.1998.00375.x
  11. Lee, S. J., Yoon, B. D., Oh, H. M., 1998, Rapid method for the determination of lipids from the green alga Botryococcus braunii, Biotechnol. Tech., 12, 553-556. https://doi.org/10.1023/A:1008811716448
  12. Livne, A., Sukenik, A., 1992, Lipid Synthesis and abundance of Acetyl CoA carboxylase in Isochrysis galbana(Prymnesiophyceae) following nitrogen starvation, Plant and Cell Physiology, 33(8), 1175-1181.
  13. Lorenz, R. T., Cysewski, G. R., 2003, Commercial potential for Haematococcus microalga as a natural source of astaxanthin, Trends Biotechnol., 18, 160-167.
  14. Metzger, P., Largeau, C., 2005, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol., 66, 486-496. https://doi.org/10.1007/s00253-004-1779-z
  15. Molina, E., Martinez, E., Sanchez, S., 1991, The influence of temperature and the initial N:P ratio on the growth of microalgae Tetraselmis sp., Process Biochemistry, 26(3), 183-187. https://doi.org/10.1016/0032-9592(91)80016-I
  16. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87-96. https://doi.org/10.1263/jbb.101.87
  17. Wolf, F. R., Nonomura, A. M., Bassham, J. A., 1985, Growth and branched hydrocarbon production in a strain of Botryococcus braunii(Chlorophyta). J. Phycol., 21, 388-396.
  18. Wyman, C. E., Goodman, B. J., 1993, Biotechnology for production of fuels, chemicals, and materials from biomass, Appl. Biochem. Biotech., 39/40, 41-59. https://doi.org/10.1007/BF02918976
  19. Xu, H., Miao, X., Wu, Q., 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of biotechnology, 126(4), 449-507.
  20. Yongmanitchai, W., Ward, O. P., 1991, Screening of algae for potential alternative sources of eicosapentaenoic acid, Phytochemistry, 30(9), 2963-2967. https://doi.org/10.1016/S0031-9422(00)98231-1

Cited by

  1. Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae vol.27, pp.1, 2013, https://doi.org/10.11001/jksww.2013.27.1.69
  2. Effects of sodium bicarbonate as an inorganic carbon source on the growth of scenedesmus dimorphus vol.28, pp.5, 2014, https://doi.org/10.11001/jksww.2014.28.5.555