DOI QR코드

DOI QR Code

Effect of 5 Week Long High-Fat Diet on Energy Metabolic Substrate Utilization and Energy Content Evaluation of Dietary Fat

5주간의 고지방식이 섭취시 흰쥐의 에너지 대사 기질 이용과 식이지방에너지 평가에 관한 연구

  • Hwang, Hye-Jung (Dept. of Physical Education, Konkuk University) ;
  • Kim, Ji-Su (Dept. of Physical Education, Konkuk University) ;
  • Suh, Hea-Jung (Dept. of Physical Education, Konkuk University) ;
  • Lim, Ki-Won (Dept. of Physical Education, Konkuk University)
  • Received : 2012.04.06
  • Accepted : 2012.06.29
  • Published : 2012.08.31

Abstract

This study investigated the effect of a long-term high-fat diet on energy metabolic substrate utilization in resting rats in order to revalue source fat energy efficiency during a high-fat diet and its effect on energy expenditure and body fat accumulation. Sprague-Dawley male rats at 4 weeks of age were bought from Orient Bio Con. The rats were divided into a control (CON) group and a high-fat diet (HF) group. Rats ate a high-fat diet (w/w 40%, kcal/kcal 64.9%) ad libitum for 5 weeks. Food intake and body weight were measured every day at 09:00 throughout the experimental period. Energy expenditure was measured using an animal energy metabolism chamber after 4 weeks. The final body weight did not change between the CON and HF groups, but caloric intake was significantly higher in the HF group than in the CON group (p<0.05). There was no difference between the groups in oxygen uptake, however carbon dioxide production was significantly higher in the HF group. Also, the respiratory exchange ratio was higher in the HF group. Carbohydrate oxidation was lower in the HF group than in the CON group, but fat oxidation in the HF group was greater. These results mean that energy substrate oxidation at rest is affected by diet composition, especially dietary fat content. Abdominal fat fad weights were significantly higher by 33% in the HF group than in the CON group even though the calorie intake in the HF group was higher by 6%. These results suggested that the dietary fat calorie value might have a higher Atwater value of 9 kcal/g, which mean that dietary fat calorie values could be reconsidered in body weight control scenarios such as which the obese or weight class athletes.

본 연구는 실험쥐 20마리를 사용하여 5주간의 고지방식이를 섭취시킨 후 CON군과 HF군으로 구분하여 식이조성에 따른 체중과 체구성 그리고 24시간 동안의 에너지 대사를 분석하였다. 그 결과 고지방식이로 인한 체중의 유의한 차이는 없었다. 5주간의 식이섭취량은 두 군간 유의한 차이가 있었고, 섭취열량은 약 6% 정도의 유의한 차이가 있었다. 산소섭취량(에너지소비량)은 두 군 간의 유의한 차이가 없었으나, 이산화탄소배출량은 유의한 차이를 보였다. 고지방식이군은 24시간 동안 유의하게 높은 지방산화량을 보였고 일반식이군은 탄수화물산화량이 유의하게 더 높은 것으로 나타났다. 특히 활동기에 두 군의 에너지 이용 기질에 많은 변화가 있는 것으로 확인되었다. 두 군간 소비에너지는 유의한 차이가 없었으나 섭취에너지에 비해 HF군의 복강 내 지방이 약 33% 이상 유의하게 높게 나타났다. 이상의 연구결과를 종합하여 볼 때 식이구성에 의하여 에너지이용기질이 달라지는 것을 확인할 수 있었다. 또한 5주간 섭취한 열량과 소비된 에너지 비를 비교하였을 때 고지방식이군에서 복강내 지방이 유의하게 증가한 것은 체내에서의 지방의 식이효율이 그동안 알려진 Atwater의 값(9 kcal/g)보다 더 높은 것으로 사료되어진다. 이는 탄수화물과 고지방식이섭취에서 체내에너지 저장량을 분석하였을 때 탄수화물의 열량은 4 kcal/g인데 비해 지방은 약 11.1 kcal/g으로 보고한 기존의 연구보고(21)를 지지하는 결과로 나타났다. 이러한 결과는 일반인 및 비만환자와 대사증후군 환자의 체중조절과 개선에 있어서 식이구성과 일일영양권장량의 재검토의 필요성을 시사하고 있으며 또한 전문운동선수들의 체급별 체중조절에 필요한 식단의 재구성 등 스포츠현장의 기초자료가 될 것으로 판단되어진다. 그러나 본 연구는 대사과정에 관여하는 여러 호르몬과 단백질 등의 분석이 이뤄지지 않았고, 에너지대사량과 조직의 중량만을 검토한 결과이므로 추후 체내에서의 지방산화와 관련된 호르몬 및 단백질 등의 측정과 전체 피하조직 및 근육 등에 저장된 지방의 분석을 포함한 추가연구가 필요한 것으로 보인다.

Keywords

References

  1. Hwang HJ, Suh HJ, Lim KW. 2009. Effect of red-pepper ingestion on excess post-exercise oxygen consumption in young women. Korean J Exerc Nutr 14: 87-93.
  2. Ministry of Health and Welfare. 2011. 2010 Korea National Health and Nutrition Examination Survey. p 52-53.
  3. Bae NK, Kwon IS, Cho YC. 2009. Ten year change of body mass index in Korean: 1997-2007. Korean J Obes 18: 24-30.
  4. Kwon TD, Son TH, Kim KH, Ryu SP, Huh MD, Yeo YG, Jeong NH. 2006. The effect of exercise on lipid metabolism and AMPK expression of skeletal muscle in rats fed highfat diet. Korean J Exerc Nutr 10: 323-329.
  5. Shimomura Y, Tamura T, Suzuki M. 1990. Less body fat accumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet. J Nutr 120: 1291-1296
  6. Lee GH. 2003. Indirect calorimetry in pulmonary diseases. Tuberc Respir Dis 55: 15-20.
  7. Gasic S, Schneider B, Waldhäusl W. 1997. Indirect calorimetry: variability of consecutive baseline determinations of carbohydrate and fat utilization from gas exchange measurements. Horm Metab Res 29: 12-15. https://doi.org/10.1055/s-2007-978972
  8. Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. 2012. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr 95: 989-994. https://doi.org/10.3945/ajcn.112.036350
  9. Kwak AJ, Choi KH, Park YH, Kim YW. 2003. Thermogenic response to fasting and exercise in different aged rats. Korean J Pediatr 47: 1100-1105.
  10. Waki H, Watanabe K, Ishii H, Tanaka Y, Shumiy S, Ando S. 2004. Whole-dody beta-oxidation of docosahexaenoic acid is decreased under n-3 polyunsaturated fatty acid insufficiency as assessed by a $^{13}CO_{2}$ breath test using [U- $^{13}C$]fatty acids. J Oleo Sci 53: 135-142. https://doi.org/10.5650/jos.53.135
  11. Kim MS, Kim JY, Park SY, Kim YW. 2005. Mechanism of elevated oxygen consumption by intralipid and heparin injection: increased skeletal muscle fat oxidation and UCP3 expression. Korean J Obes 14: 9-15.
  12. Lim KW, Kim JS, Jeon YR, Hwang HJ, Suh HJ. 2011. Measurement of resting metabolic rate using metabolic chamber in resting rats. J Exer Nutr Biochem 15: 35-40.
  13. Angus DJ, Hargreaves M, Dancey J, Febbraio MA. 2000. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol 88: 113-119.
  14. Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T. 2000. Chro (-)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr 130: 2990-2995.
  15. Gaíva MH, Couto RC, Oyama LM, Couto GE, Silveria VL, Roberioa EB, Nascimento CM. 2001. Polyunsaturated fatty acid-rich diets: effect on adipose tissue metabolism in rats. Br J Nutr 86: 371-377. https://doi.org/10.1079/BJN2001392
  16. Kim EJ, Kim YE, Kim GY. 2007. The anti-obesity effects of treadmill exercise and Gastrodia elata on the obesity rats induced high-fat diet. Korean J Exerc Nutr 11: 61-68.
  17. Bertrand HA, Anderson WR, Masoro EJ, Yu BP. 1987. Action of food restriction on age-related changes in adipocyte lipolysis. J Gerontol 42: 666-673. https://doi.org/10.1093/geronj/42.6.666
  18. Mercer SW, Trayhurn P. 1987. Effect of high fat diets on energy balance and thermogenesis in brown adipose tissue of lean and genetically obese ob/ob mice. J Nutr 117: 2147- 2153.
  19. Kim CH, Chung YE, Lee SJ, Park JY, Hong SK, Kim HK, Suh KI, Lee KU. 2000. Effects of high fat diet on lipolysis in skeletal muscle and adipose tissue in rats. J Korean Diabetes Assoc 24: 641-651.
  20. Lee JK, Kim JK, Moon HW, Shin YO, Lee JS. 2007. The effects of dietary interventions on mRNA expression of peroxisome proliferator activated receptor isoforms (PPAR isoforms) in rat skeletal muscle. Korean J Nutr 40: 221- 228.
  21. Donato K, Hegsted DM. 1985. Efficiency of utilization of various sources of energy for growth. Proc Natl Acad Sci U S A 82: 4866-4870. https://doi.org/10.1073/pnas.82.15.4866
  22. Lusk G. 1924. Animal calorimetary: analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59: 41-42.
  23. Bergouignan A, Gozansky WS, Barry DW, Leitner W, MacLean PS, Hill JO, Draznin B, Melanson EL. 2012. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans. PLoS One 7: e30164.