DOI QR코드

DOI QR Code

Effect of Enzymatic Deacetylation of T-2 Toxin on the Analysis of T-2 and HT-2 Toxins in Corn and Brown Rice

옥수수 및 현미에서 효소적 탈아세틸화가 T-2와 HT-2 독소 분석에 미치는 영향

  • Lee, Su-Jin (Food Safety Research Group, Korea Food Research Institute) ;
  • Ha, Sang-Do (Department of Food Science and Technology, Chung-Ang University) ;
  • Chun, Hyang-Sook (Food Safety Research Group, Korea Food Research Institute)
  • 이수진 (한국식품연구원 안전유통연구단) ;
  • 하상도 (중앙대학교 식품공학과) ;
  • 전향숙 (한국식품연구원 안전유통연구단)
  • Received : 2012.03.26
  • Accepted : 2012.05.16
  • Published : 2012.08.31

Abstract

Through an analysis of T-2 and HT-2 toxins in corn and brown rice, the effect of enzymatic deacetylation of T-2 toxin on HT-2 toxin was investigated. Gas chromatography (GC) with electron capture detection and high-performance liquid chromatography (HPLC) with fluorescence detection were used for quantitative determination. T-2 toxin was converted into HT-2 (84-86%) within 15 min in the presence of crude protein extracts from corn and brown rice. The absence of T-2 conversion was observed for autoclaved samples, in which the enzymes were inactivated. When phosphate buffered saline, followed by methanol, was used as the extraction solvent, recoveries of T-2 toxin spiked at 50 and 200 ${\mu}g/kg$ were from 60 to 87%, whereas those of HT-2 in the autoclaved samples were 0%. In non-autoclaved samples, recoveries of HT-2 were 37-66%, whereas those of T-2 were negligible. However, the conversion of T-2 into HT-2 was not observed when samples were extracted by methanol/water.

T-2와 HT-2 독소는 type A trichothecene계 곰팡이독소에 속하는 식품 오염물질이나, 국내의 경우 기준치 설정과 분석법의 확립이 요구되고 있다. 본 연구에서는 T-2와 HT-2 독소의 분석법 확립에 도움이 되고자 옥수수와 현미 시료에 존재하는 carboxylesterase에 의한 T-2 독소의 탈아세틸화가 GC 및 HPLC에 의한 T-2와 HT-2 독소 분석치에 미치는 영향을 살펴보았다. 옥수수와 현미 시료로부터 제조된 carboxylesterase 조효소원에 의한 T-2 독소의 HT-2 독소로의 전환 정도를 살펴본 결과, 15분 이내에 84-86%의 HT-2 독소가 급격히 형성되었고, 30분 이후에는 93-95%로 증가한 후 일정하게 유지되었다. 시료에 존재하는 효소의 불활성화 여부가 분석치에 미치는 영향을 살펴보면, 효소를 불활성화 시킨 시료에서는 T-2 독소가 60-107% 검출되었고 HT-2 독소가 검출되지 않은 반면, 효소를 불활성화 시키지 않은 시료에서는 T-2 독소가 0-9% 검출되었고 HT-2 독소가 77-121% 생성되었다. 추출용매 및 추출방법에 따른 T-2 독소의 탈아세틸화를 살펴본 결과, methanol/water 80:20으로 추출한 경우에는 T-2 독소가 84-108% 검출되었다. 곰팡이독소의 동시분석을 위해 PBS로 1차 추출한 다음 methanol로 추출할 때, 효소를 불활성화 시킨 시료에서는 T-2 독소가 60-87% 검출되었고 HT-2 독소가 검출되지 않았다. 반면, 효소를 불활성화 시키지 않은 시료에서는 T-2 독소가 검출되지 않았고 HT-2 독소가 37-66% 생성되었다. 이러한 결과는 옥수수와 현미 시료에 존재하는 carboxylesterase에 의해 T-2 독소가 탈아세틸화되어 T-2와 HT-2 독소를 각각 정량분석할 때 분석치에 영향을 미칠 수 있다는 것을 시사한다.

Keywords

References

  1. Lee HK, Hwang HH, Kim MJ, Kim MK, Lee SE, Lee HS. Review: Toxicity and metabolism of mycotoxins occurring in foods and feeds. J. Korean Soc. Agric. Chem. Biotechnol. 45: 1-10 (2002)
  2. Song HH, Kim J, Lee C. A review of mycotoxins from Fusarium species. Safe Food 1: 19-28 (2006)
  3. Sudakin DL. Trichothecenes in the environment: Relevance to human health. Toxicol. Lett. 143: 97-107 (2003) https://doi.org/10.1016/S0378-4274(03)00116-4
  4. Li Y, Wang Z, Beier RC, Shen J, Smet DD, Saeger SD, Zhang S. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agr. Food Chem. 59: 3441-3453 (2011) https://doi.org/10.1021/jf200767q
  5. Razzazi-Fazeli E, Rabus B, Cecon B, Bohm J. Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 968: 129-142 (2002) https://doi.org/10.1016/S0021-9673(02)00957-3
  6. Yoshizawa T, Kohno H, Ikeda K, Shinoda T, Yodohama H, Morita K, Kusada O, Kobayashi YA. Practical method for measuring deoxynivalenol, nivalenol, and T-2 + HT-2 toxin in foods by and enzyme-linked immunosorbent assay using monoclonal antibodies. Biosci. Biotech. Bioch. 68: 2076-2085 (2004) https://doi.org/10.1271/bbb.68.2076
  7. Schlatter J. Toxicity data relevant for hazard characterization. Toxicol. Lett. 153: 83-89 (2004) https://doi.org/10.1016/j.toxlet.2004.04.025
  8. JECFA, T-2 and HT-2 toxins. WHO Food Additives Series 47, WHO. Available from: in http://www.inchem.org/documents/jecfa/jecmono/v47je06.htm Accessed Jan. 12, 2012.
  9. Tritscher AM, Page SW. The risk assessment paradigm and its application for trichothecenes. Toxicol. Lett. 153: 155-163 (2004) https://doi.org/10.1016/j.toxlet.2004.04.030
  10. Visconti A. Problems associated with Fusarium mycotoxins in cereals. Bulletin of the Institute for Comprehensive Agricultural Sciences, Kinki University 9: 39-55 (2001)
  11. Meneely JP, Ricci F, van Egmond HP, Elliott CT. Current methods of analysis for the determination of trichothecene mycotoxins in food. Trends Anal. Chem. 30: 192-203 (2011) https://doi.org/10.1016/j.trac.2010.06.012
  12. EFSA. Scientific report submitted to EFSA - Report on toxicity data on trichothecene mycotoxins HT-2 and T-2 toxins (CT/EFSA/CONTAM/2010/03), Prepared by Ulrike Schuhmacher-Wolz, Karin Heine, Klaus Schneider, Forschungs-und Beratungsinstitut Gefahrstoffe GmbH (FoBiG), Freiburg, Germany (2010)
  13. Dohnal V, Jezkova A, Jun D, Kuca K. Metabolic pathways of T-2 toxin. Curr. Drug Metab. 9: 77-82 (2008) https://doi.org/10.2174/138920008783331176
  14. Lattanzio VMT, Solfrizzo M, Visconti A. Enzymatic hydrolysis of T-2 toxin for the quantitative determination of total T-2 and HT-2 toxins in cereals. Anal. Bioanal. Chem. 395: 1325-1334 (2009) https://doi.org/10.1007/s00216-009-2822-9
  15. Gershater M, Sharples K, Edwards R. Carboxylesterase activities toward pesticide esters in crops and weeds. Phytochemistry 67: 2561-2567 (2006) https://doi.org/10.1016/j.phytochem.2006.09.019
  16. Lattanzio VMT, Gatta SD, Suman M, Visconti A. Development and in-house validation of a robust and sensitive solid-phase extraction liquid chromatography/tandem mass spectrometry method for the quantitative determination of aflatoxins B1, B2, G1, G2, ochratoxin A, deoxynivalenol, zearalenone, T-2, and HT- 2 toxins in cereal-based foods. Rapid Commun. Mass Sp. 25: 1869-1880 (2011) https://doi.org/10.1002/rcm.5047
  17. Lattanzio VMT, Solfrizzo M, Visconti A. Determination of trichothecenes in cereals and cereal-based products by liquid chromatography tandem mass spectrometry. Food Addit. Contam. 25: 320-330 (2008) https://doi.org/10.1080/02652030701513792
  18. Lattanzio VMT, Solfrizzo M, Powers S, Visconti A. Simultaneous determination of aflatoxins, ochratoxin A, and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. Rapid Commun. Mass Sp. 21: 3253-3261 (2007) https://doi.org/10.1002/rcm.3210
  19. Ohta M, Ishii K, Ueno Y. Metabolism of trichothecene mycotoxins. I. Microsomal deacetylation of T-2 toxin in animal tissues. J. Biochem. 82: 1591-1598 (1977) https://doi.org/10.1093/oxfordjournals.jbchem.a131854
  20. Ohta M, Matsumoto H, Ishii K, Ueno Y. Metabolism of trichothecene mycotoxins. II. Substrate specificity of microsomal deacetylation of trichothecenes. J. Biochem. 84: 697-706 (1978) https://doi.org/10.1093/oxfordjournals.jbchem.a132175
  21. Visconti A, Mirocha CJ. Identification of various T-2 toxin metabolites in chicken excreta and tissues. Appl. Environ. Microb. 49: 1246-1250 (1985)
  22. Park JJ, Chu FS. Partial purification and characterization of an esterase from Fusarium sporotrichioides. Nat. Toxins 4: 108-116 (1996) https://doi.org/10.1002/19960403NT2
  23. McCormick SP, Alexander NJ. Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl. Environ. Microb. 68: 2959-2964 (2002) https://doi.org/10.1128/AEM.68.6.2959-2964.2002
  24. FAO. Worldwide regulation for mycotoxins in food and feed in 2003. A compendium. FAO food and nutrition paper n. 81, FAO, Rome, Italy (2003)