DOI QR코드

DOI QR Code

Synthesis and Luminescence Properties of Tb3+-Doped K2BaW2O8 Phosphors

Tb3+ 이온이 첨가된 K2BaW2O8 형광체의 합성 및 형광특성

  • Received : 2012.07.19
  • Accepted : 2012.08.22
  • Published : 2012.09.27

Abstract

Green phosphors $K_2BaW_2O_8:Tb^{3+}$(1.0 mol%) were synthesized by solid state reaction method. Differential thermal analysis was applied to trace the reaction processes. Three endothermic values of 95, 706, and $1055^{\circ}C$ correspond to the loss of absorbed water, the release of carbon dioxide, and the beginning of the melting point, respectively. The phase purity of the powders was examined using powder X-ray diffraction(XRD). Two strong excitation bands in the wavelength region of 200-310 nm were found to be due to the ${WO_4}^{2-}$ exciton transition and the 4f-5d transition of $Tb^{3+}$ in $K_2BaW_2O_8$. The excitation spectrum presents several lines in the range of 310-380 nm; these are assigned to the 4f-4f transitions of the $Tb^{3+}$ ion. The strong emission line at around 550 nm, due to the $^5D_4{\rightarrow}^7F_5$ transition, is observed together with weak lines of the $^5D_4{\rightarrow}^7F_J$(J = 3, 4, and 6) transitions. A broad emission band peaking at 530 nm is observed at 10 K, while it disappears at room temperature. The decay times of $Tb^{3+}$ $^5D_4{\rightarrow}^7F_5$ emission are estimated to be 4.8 and 1.4 ms, respectively, at 10 and 295 K; those of the ${WO_4}^{2-}$ exciton emissions are 22 and 0.92 ${\mu}s$ at 10 and 200 K, respectively.

Keywords

References

  1. S. Nakamura, G. Fasol and S. J. Pearton, The Blue Laser Diode: The Complete Story, p. 7, Springer Verlag, NY, USA (2000).
  2. S. Nakamura, MRS Bull., 22, 29 (1997).
  3. Y. F. Liu, Z. P. Yang and Q. M. Yu, J. Alloy. Comp., 509, L199 (2011). https://doi.org/10.1016/j.jallcom.2011.03.064
  4. X. M. Zhang, W. L. Li, K. H. Jang and H. J. Seo, Curr. Appl. Phys., 12, 299 (2012). https://doi.org/10.1016/j.cap.2011.06.024
  5. K. H. Jang and J. H. Koo, Sae Mulli, 62, 928 (2012) (in Korean). https://doi.org/10.3938/NPSM.62.928
  6. Y. Wu, D. Ding, S. Pan, F. Yang and G. Ren, J. Alloy. Comp., 509, 7186 (2011). https://doi.org/10.1016/j.jallcom.2011.04.051
  7. Q. Li, J. Huang and D. Chen, J. Alloy. Comp., 509, 1007 (2011). https://doi.org/10.1016/j.jallcom.2010.08.160
  8. S. C. Prashantha, B. N. Lakshminarasappa and B. M. Nagabhushana, J. Alloy. Comp., 509, 10185 (2011). https://doi.org/10.1016/j.jallcom.2011.03.148
  9. K. H. Jang, N. M. Khaidukov, V. P. Tuyen, S. I. Kim, Y. M. Yu and H. J. Seo, J. Alloy. Comp., 536, 47 (2012). https://doi.org/10.1016/j.jallcom.2012.05.010
  10. Y. M. Moon, S. H. Choi, H. K. Jung and S. H. Lim, Kor. J. Mater. Res., 18, 511 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.10.511
  11. J. H. Seo, S. Choi, S. Nahm and H. K. Jung, Kor. J. Mater. Res., 22, 103 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.2.103
  12. J. Liao, B. Qiu and H. Lai, J. Lumin., 129, 668 (2009). https://doi.org/10.1016/j.jlumin.2009.01.016
  13. Z. Ju, R. Wei, X. Gao, W. Liu and C. Pang, Opt. Mater., 33, 909 (2011). https://doi.org/10.1016/j.optmat.2011.01.025
  14. F. S. Wen, X. Zhao, H. Huo, J. S. Chen, E. Shu-Lin and J. H. Zhang, Mater. Lett., 55, 152 (2002). https://doi.org/10.1016/S0167-577X(01)00638-3
  15. M. Mai and C. Feldmann, J. Mater. Sci., 47, 1427 (2012). https://doi.org/10.1007/s10853-011-5923-8
  16. Q. Xiao, Q. Zhou and M. Li, J. Lumin., 130, 1092 (2010). https://doi.org/10.1016/j.jlumin.2010.02.001
  17. M. J. Treadaway and R. C. Powell, J. Chem. Phys., 61, 4003 (1974). https://doi.org/10.1063/1.1681693
  18. B. Grobelna, B. Lipowska and A. M. K onkowski, J. Alloy. Comp., 419, 191 (2006). https://doi.org/10.1016/j.jallcom.2005.07.078
  19. S. Cho and S. W. Cho, Kor. J. Mater. Res., 22, 215 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.5.215
  20. Q. Zhang, Q. Meng, Y. Tian, X. Feng, J. Sun and S. Lu, J. Rare Earths, 29, 815 (2011). https://doi.org/10.1016/S1002-0721(10)60566-2
  21. Q. Wei and D. Chen, Optic. Laser Tech., 41, 783 (2009). https://doi.org/10.1016/j.optlastec.2008.12.003
  22. Y. Huang and H. J. Seo, J. Electrochem. Soc., 158(7), J215 (2011). https://doi.org/10.1149/1.3585838
  23. C. Qin, Y. Huang and H. J. Seo, J. Alloy. Comp., 534, 86 (2012). https://doi.org/10.1016/j.jallcom.2012.04.034
  24. P. Akhmedova, B. Y. Gamataeva and A. M. Gasanaliev, Russ. J. Inor. Chem., 54, 779 (2009). https://doi.org/10.1134/S0036023609050179
  25. A. M. Gasanaliev, P. A. Akhmedova and B. Y. Gamataeva, Russ. J. Inor. Chem., 57, 274 (2012). https://doi.org/10.1134/S0036023612020088
  26. A. M. Gasanaliev, G. M. Minkhadzhev and B. Y. Gamataeva, Russ. J. Inor. Chem., 53, 1325 (2008). https://doi.org/10.1134/S0036023608080305
  27. A. M. Gasanaliev, G. M. Minkhadzhev and B. Y. Gamataeva, Russ. J. Inor. Chem., 52, 621 (2007). https://doi.org/10.1134/S0036023607040262
  28. V. D. Zhuravlev, Y. A. Velikodnyi, A. S. Vinogradova- Zhabrova, A. P. Tyutyunnik and V. G. Zubkov, Russ. J. Inor. Chem., 53, 1632 (2008). https://doi.org/10.1134/S0036023608100185
  29. R. D. Shannon, Acta Crystallogr. A, 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  30. T. Hoshina, Luminescence of Rare Earth Ions, p. 12, Sony Research Center Rep., Japan (1983) (in Japanese).
  31. W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 49, 4447 (1968). https://doi.org/10.1063/1.1669895