DOI QR코드

DOI QR Code

Production of Lignocellulytic Enzymes from Spent Mushroom Compost of Pleurotus eryngii

큰느타리버섯 수확 후 배지로부터 리그닌섬유소분해효소 생산

  • Lim, Sun-Hwa (Graduate School of Bio. & Information Technology, Hankyong National University) ;
  • Kim, Jong-Kun (Graduate School of Bio. & Information Technology, Hankyong National University) ;
  • Lee, Yun-Hae (Mushroom Research Institute, GARES) ;
  • Kang, Hee-Wan (Graduate School of Bio. & Information Technology, Hankyong National University)
  • 임선화 (한경대학교 바이오.정보기술 전문대학원) ;
  • 김종군 (한경대학교 바이오.정보기술 전문대학원) ;
  • 이윤혜 (경기도농업기술원 버섯연구소) ;
  • 강희완 (한경대학교 바이오.정보기술 전문대학원)
  • Received : 2012.09.10
  • Accepted : 2012.09.16
  • Published : 2012.09.28

Abstract

The lignocellulytic enzymes including a-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) and cellulase (EC 3.2.1.4) were extracted from spent mushroom compost (SMC) of Pleurotus eryngii. Different extraction buffers and conditions were tested for optimal recovery of the enzymes. The optimum extraction was shaking incubation (200 rpm) for 2 h at $4^{\circ}C$. ${\alpha}$-Amylase was extracted with the productivity range from 1.20 to 1.6 Unit/SMC g. Cellulase was recovered with the productivity range from 2.10 to 2.80 U/gf. ${\beta}$-glucosidase and ${\beta}$-xylosidase productivities showed lowest recovery producing 0.1 U/g and 0.02 U/g, respectively. The P. eryngii SMCs collected from three different mushroom farms showed different recovery on laccase and xylanse, cellulase. Furthermore, the water extracted SMC was compared to commercial enzymes for its industrial application in decolorization and cellulase activity.

큰느타리 수확 후 배지(spent mushroom compost, SMC)로부터 목질분해효소인 ${\alpha}$-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) cellulase (EC 3.2.1.4)가 다양한 buffer로 추출 되었으며 1 g SMC당 5 volume으로 첨가하고 2시간 동안 $4^{\circ}C$에서 200 rpm속도로 진탕배양 시에 최적 효소회수율을 보였다. ${\alpha}$-Amylase는 2.10에서 2.80 U/g (SMC)의 효소활성을 보였으며 ${\beta}$-glucosidase와 ${\beta}$-xylosidase는 0.1 U/g 이하의 가장 낮은 효소활성이 나타났다. Cellulase는 2.80 U/g와 xylanse는 5.0 U/g이상의 비교적 높은 효소회수율을 보였다. 큰느타리버섯 SMC 추출물은 상업용 laccase와 탈색효과 cellulase와는 filter paper분해활성을 비교하여 산업적 적용을 평가하였다.

Keywords

References

  1. Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco- Paulo, A. and Gubitz, G. M. 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 66:3357-3362. https://doi.org/10.1128/AEM.66.8.3357-3362.2000
  2. Angenent, L. T. 2007. Energy biotechnology: beyond the general lignocellulose-to-ethanol pathway. Current Opinion in Biotechnology 18:191-192. https://doi.org/10.1016/j.copbio.2007.05.003
  3. Ayala, M., Gonzalez-Munoz, S. S., Pinos-Rodriguez, J. M., Vazquez, C., Meneses, M., Loera, O. and Mendoza, G. D. 2011. Fibrolytic potential of spent compost of Agaricus bisporus to degrade forages for ruminants. African J. of Microbiol. Res. 5:643-650.
  4. Ball, A. S. and Jacson, A. M. 1995. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Biores. Technol. 54:311-314. https://doi.org/10.1016/0960-8524(95)00153-0
  5. Claus, H., Faber, G. and Konig, H. 2002. Redox mediated decolorization of synthetic dyes by fungal laccases. Appl. Microb. Biotech. 59:672-678. https://doi.org/10.1007/s00253-002-1047-z
  6. Couto, S. R. and Toca Herrera, J. L. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnology Advances, vol. 24, no. 5, pp. 500-513. https://doi.org/10.1016/j.biotechadv.2006.04.003
  7. Devi, V. M., Inbathamizh, L., Ponnu, T. M., Premalatha, S and Divya, M. 2012. Dye Decolorization using fungal laccase. Bulletin of Environment, Pharmacology and Life Sciences 1:67-71
  8. Hoshida, H., Fujita, T., Murata, K., Kubo, K. and Akada, R. 2005. Copper dependent production of a Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69:1090-1097. https://doi.org/10.1271/bbb.69.1090
  9. Gianluca, B., Chiara L., Giovanni, M., Patrizia, R., Carla, P., Luciano, V. and Francesco, G. 2008. Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl. Microbiol Biotechnol. 79:731-741. https://doi.org/10.1007/s00253-008-1479-1
  10. Guo, M., Lu, F., Pu, J., Bai, D. and Du, L. 2005. Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl. Microbiol. Biotechnol. 69:178-183 https://doi.org/10.1007/s00253-005-1985-3
  11. Ko, H. K., Park, S. H., Kim, S. H., Park, H. G. and Park, W. M. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. 50:103-106. https://doi.org/10.1007/BF02931456
  12. Jang, H. W. 2011. Mushroom. The Korean society of mushroom. 15:19-30
  13. Matcham, S. E. and Wood, D. A. 1992. Purification of Agaricus bisporus extracellular laccase from mushroom compost. Biotechnol. Lett. 14:297-300. https://doi.org/10.1007/BF01022327
  14. Na, J. N. and Kim, J. S. 2008. The optimum condition of SSF to ethanol production from starch biomass. Korean Chem. Eng. Res. 46:858-862
  15. Saranyu, K. and Rakrudee, S. 2007. Laccase from spent mushroom compost of Lentinus polychrous Lev. and its potential for Remazol Brilliant Blue R decolourisation. Biotechnology 6:408-413 https://doi.org/10.3923/biotech.2007.408.413
  16. Scarse, R. 1995. Cultivating mushrooms-the potential. Mycologist 9:18-19. https://doi.org/10.1016/S0269-915X(09)80242-5
  17. Singh, A. D., Abdullah N. and Vikineswary, S. 2003. Optimization of extraction of bulk enzymes from spent mushroom compost. J. Chem. Technol. Biotechnol. 78:743-752. https://doi.org/10.1002/jctb.852
  18. Vyas, B. R. M and Molitoris, H. P. 1995. Involvement of an extracellular $H_{2}O_{2}$-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of remazol brilliant blue R. Appl. Environ. Microbiol. 61:3919-3927.
  19. Zervakis, G., Venturella, G. and Papadopoulou, K. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Mycrobiology 147:3183-3194.
  20. Zhao, J., De Koker, T. H. and Janse, B. J. H. 1996. Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media. FEMS Microbiol. Lett. 145:393-399. https://doi.org/10.1111/j.1574-6968.1996.tb08606.x

Cited by

  1. Yield characteristics according to use of post-harvest substrate of Pleurotus pulmonarius vol.13, pp.4, 2015, https://doi.org/10.14480/JM.2015.13.4.310
  2. Analysis of Mycological Characteristics and Lignocellulose Degradation of Gyrodontium sacchari vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.239
  3. Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms,Pleurotusspp., and Potential Use in Dye Decolorization vol.41, pp.4, 2013, https://doi.org/10.5941/MYCO.2013.41.4.214
  4. Enhanced nitrogen removal with spent mushroom compost in a sequencing batch reactor vol.244, 2017, https://doi.org/10.1016/j.biortech.2017.08.050
  5. Optimal Extraction and Characteristics of Lignocellulytic Enzymes from Various Spent Mushroom Composts vol.41, pp.3, 2013, https://doi.org/10.4489/KJM.2013.41.3.160
  6. Decolorization Efficiency of Different Dyes by Extract from Spent Mushroom Substrates of Pleurotus eryngii vol.42, pp.3, 2014, https://doi.org/10.4489/KJM.2014.42.3.213
  7. Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi vol.14, pp.2, 2016, https://doi.org/10.14480/JM.2016.14.2.51
  8. Metabolic Profiling of Pleurotus tuoliensis During Mycelium Physiological Maturation and Exploration on a Potential Indicator of Mycelial Maturation vol.9, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2018.03274