DOI QR코드

DOI QR Code

Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis

  • Lee, Jeong-Hwan (Creative Research Initiatives, Division of Life Sciences, Korea University) ;
  • Kim, Soo-Hyun (Creative Research Initiatives, Division of Life Sciences, Korea University) ;
  • Kim, Jae-Joon (Creative Research Initiatives, Division of Life Sciences, Korea University) ;
  • Ahn, Ji-Hoon (Creative Research Initiatives, Division of Life Sciences, Korea University)
  • Received : 2012.04.26
  • Accepted : 2012.06.04
  • Published : 2012.09.30

Abstract

High expression of osmotically responsive genes1 (HOS1), a key regulator of low temperature response and flowering time, encodes an E3 ubiquitin ligase in Arabidopsis. Here, we report characterization of a newly identified splice variant (HOS1-L) of HOS1. Comparative analyses revealed that HOS1-L has a longer 5' nucleotide sequence than that of the previously identified HOS1 (HOS1-S) and that its protein sequence was more conserved than that of HOS1-S in plants. HOS1-L transcripts were spatio-temporally more abundant than those of HOS1-S. The recovery rate of HOS1-S expression was faster than that of HOS1-L after cold treatment. Diurnal oscillation patterns of HOS1-L revealed that HOS1-L expression was affected by photoperiod. An in vitro pull-down assay revealed that the HOS1-L protein interacted with the ICE1 protein. HOS1-L overexpression caused delayed flowering in wild-type plants. Collectively, these results suggest regulation of HOS1 expression at the post-transcriptional level.

Keywords

References

  1. Black, D. L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291-336. https://doi.org/10.1146/annurev.biochem.72.121801.161720
  2. Graveley, B. R. (2001) Alternative splicing: increasing diversity in the proteomic world. Trends. Genet. 17, 100-107. https://doi.org/10.1016/S0168-9525(00)02176-4
  3. Severing, E. I., van Dijk, A. D. and van Ham, R. C. (2011) Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data. BMC Plant Biol. 11, 82. https://doi.org/10.1186/1471-2229-11-82
  4. Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Huang, X. and Han, B. (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 20, 1238-1249. https://doi.org/10.1101/gr.106120.110
  5. Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W. K. and Mockler, T. C. (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20, 45-58. https://doi.org/10.1101/gr.093302.109
  6. Yoo, H. H., Kwon, C. and Chung, I. K. (2010) An Arabidopsis splicing RNP variant STEP1 regulates telomere length homeostasis by restricting access of nuclease and telomerase. Mol. Cells 30, 279-283. https://doi.org/10.1007/s10059-010-0115-y
  7. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C. and Dean, C. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745. https://doi.org/10.1016/S0092-8674(00)80256-1
  8. Macknight, R., Duroux, M., Laurie, R., Dijkwel, P., Simpson, G. and Dean, C. (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14, 877-888. https://doi.org/10.1105/tpc.010456
  9. Quesada, V., Macknight, R., Dean, C. and Simpson, G. G. (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 22, 3142-3152. https://doi.org/10.1093/emboj/cdg305
  10. Xing, D., Zhao, H., Xu, R. and Li, Q. Q. (2008) Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time. Plant J. 54, 899-910. https://doi.org/10.1111/j.1365-313X.2008.03455.x
  11. Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I. and Dean, C. (2003) FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787. https://doi.org/10.1016/S0092-8674(03)00425-2
  12. James, A. B., Syed, N. H., Bordage, S., Marshall, J., Nimmo, G. A., Jenkins, G. I., Herzyk, P., Brown, J. W. and Nimmo, H. G. (2012) Alternative splicing mediates responses of the arabidopsis circadian clock to temperature changes. Plant Cell 24, 961-981. https://doi.org/10.1105/tpc.111.093948
  13. Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B. and Zhu, J. K. (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleocytoplasmic partitioning. Genes & Dev. 15, 912-924. https://doi.org/10.1101/gad.866801
  14. Dong, C. H., Agarwal, M., Zhang, Y., Xie, Q. and Zhu, J. K. (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. U.S.A. 103, 8281-8286. https://doi.org/10.1073/pnas.0602874103
  15. Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S. and Ahn, J. H. (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Dev. 21, 397-402. https://doi.org/10.1101/gad.1518407
  16. Lee, J. H. and Kim, W. T. (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol. Cells 31, 201-208. https://doi.org/10.1007/s10059-011-0031-9
  17. Lazaro, A., Valverde, F., Pineiro, M. and Jarillo, J. A. (2012) The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering. Plant Cell 24, 982-999. https://doi.org/10.1105/tpc.110.081885
  18. Hong, S. M., Bahn, S. C., Lyu, A., Jung, H. S. and Ahn, J. H. (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol. 51, 1694-1606. https://doi.org/10.1093/pcp/pcq128
  19. Weigel, D. and Glazebrook, J. (2002) Arabidopsis: a laboratory manual., cold spring harbor laboratory press, cold spring harbor, NY.
  20. Mandel, M. A. and Yanofsky, M. F. (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522-524. https://doi.org/10.1038/377522a0
  21. Chaikam, V. and Karlson, D. T. (2010) Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep. 43, 1-8. https://doi.org/10.5483/BMBRep.2010.43.1.001
  22. Chaikam, V. and Karlson, D. T. (2010) Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Rep. 43, 103-109. https://doi.org/10.5483/BMBRep.2010.43.2.103

Cited by

  1. Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1 vol.19, pp.8, 2014, https://doi.org/10.1016/j.tplants.2014.03.012
  2. Cold Signaling and Cold Response in Plants vol.14, pp.3, 2013, https://doi.org/10.3390/ijms14035312
  3. Genome-wide identification and phylogenetic, comparative genomic, alternative splicing, and expression analyses of TCP genes in plants vol.12, 2017, https://doi.org/10.1016/j.plgene.2017.05.004
  4. Functional insights of nucleocytoplasmic transport in plants vol.5, 2014, https://doi.org/10.3389/fpls.2014.00118
  5. Exploring the pleiotropy of hos1 vol.66, pp.6, 2015, https://doi.org/10.1093/jxb/erv022