DOI QR코드

DOI QR Code

Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters

  • Kim, Jung-Woon (Department of Polymer/Nano Science and Technology, Chonbuk National University) ;
  • Kim, Kun-Ji (Department of Polymer/Nano Science and Technology, Chonbuk National University) ;
  • Park, Soo-Yeon (Department of Polymer/Nano Science and Technology, Chonbuk National University) ;
  • Jeong, Kwang-Un (Department of Polymer/Nano Science and Technology, Chonbuk National University) ;
  • Lee, Myong-Hoon (Department of Polymer/Nano Science and Technology, Chonbuk National University)
  • Received : 2012.04.03
  • Accepted : 2012.06.11
  • Published : 2012.09.20

Abstract

Fullerene/polystyrene ($C_{60}$/PS) nano particle was prepared by using emulsion polymerization. Styrene and fullerene were emulsified in aqueous media in the presence of poly(N-vinyl pyridine) as an emulsion stabilizer, and polymerization was initiated by water soluble radical initiator, potassium persulfate. The obtained nano particles have an average diameter in the range of 400-500 nm. The fullerene contents in the nano particle can be controlled up to 15 wt % by varying the feed ratio, which was confirmed by themogravimetric analysis (TGA) and elemental analysis (EA). The structure and morphologies of the $C_{60}$/PS nano particles were examined by various analytical techniques such as dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), and UV spectroscopy. Unlike conventional $C_{60}$/PS particles initiated by organic free radical initiators, in which the fullerene is copolymerized forming a covalent bond with styrene monomer, the prepared $C_{60}$/PS nano particles contain pristine fullerene as secondary particles homogeneously distributed in the polystyrene matrix.

Keywords

References

  1. Zhang, Y.; Yang, S.; Liu, C.; Dai, X.; Cao, W.; Xu, J.; Li, Y. New J. Chem. 2002, 26, 617. https://doi.org/10.1039/b111722j
  2. Hinokuma, K.; Ata, M. Chemical Physics Letters 2001, 341, 442. https://doi.org/10.1016/S0009-2614(01)00549-8
  3. Miller, G. P. C. R. Chimie 2006, 9, 952. https://doi.org/10.1016/j.crci.2005.11.020
  4. Zhang, W.; Honeychuck, R. V.; Hussam, A. Langmuir 1996, 12, 1402. https://doi.org/10.1021/la950569r
  5. Wang, X.-S.; Metanawin, T.; Zheng, X.-Y.; Wang, P.-Y.; Ali, M.; Vernon, D. Langmiur 2008, 24, 9230. https://doi.org/10.1021/la801968x
  6. Mountrichas, G.; Pispas, S.; Xenogiannopoulou, E.; Aloukos, P.; Couris, S. J. Phys. Chem. B 2007, 111, 4315. https://doi.org/10.1021/jp068796x
  7. Sapurina, I. Y.; Stejskal, J.; Trchova, M.; Hlavata, D.; Biryulin, Y. F. Fullerene, Nanotubes and Carbon Nanostructures 2006, 14, 447. https://doi.org/10.1080/15363830600666126
  8. Ederle, Y.; Mathis, C. Macromolecules 1997, 30, 2546. https://doi.org/10.1021/ma961671d
  9. Ford, W. T.; Graham, T. D. Macromolecules 1997, 30, 6422. https://doi.org/10.1021/ma970238g
  10. Lopatin, M. A.; Evlampieva, N. P.; Lopatina, T. I.; Kuznetsova, Y. L.; Lavrenko, P. N. Russian Journal of General Chemistry 2008, 78(8), 1545. https://doi.org/10.1134/S1070363208080136
  11. Chen, Y.; Zhao, Y.; Cai, R.; Huang, Z.-E.; Xiao, L. J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 2653. https://doi.org/10.1002/(SICI)1099-0488(199810)36:14<2653::AID-POLB18>3.0.CO;2-A
  12. Cao, T.; Webber, S. E. Macromolecules 1996, 29, 3826. https://doi.org/10.1021/ma9517761
  13. Sun, Y.-P.; Lawson, G. E.; Bunker, C. E.; Johnson, R. A.; Ma, B.; Farmer, C.; Riggs, J. E.; Kitaygorodskiy, A. Macromolecules 1996, 29, 8441. https://doi.org/10.1021/ma960579e
  14. Rusen, E.; Marculescu, B.; Rreda, N.; Bucur, C.; Mihut, L. Polymer Bulletin 2008, 61, 581. https://doi.org/10.1007/s00289-008-0985-8
  15. Liao, Q.; Qu, X.; Chen, L.; Jin, X. J. Phys. Chem. B 2006, 110, 7153. https://doi.org/10.1021/jp056588j
  16. Wang, W.; Howdle, S. M.; Yan, D. Chem. Commun. 2005, 3939.
  17. Fabian, J. Physical Review B 1996, 53(20), 13864. https://doi.org/10.1103/PhysRevB.53.13864
  18. Treubig, J. M., Jr.; Brown, P. R. J. Chrom. A 2002, 960, 135. https://doi.org/10.1016/S0021-9673(01)01391-7
  19. Ginzburg, B. M.; Tuichiev, S.; Tabarov, S. K.; Shepelevskii, A. A.; Shivaev, L. A. Technical Physics 2005, 50(11), 1458. https://doi.org/10.1134/1.2131953
  20. Baker, G. L.; Gupta, A.; Clark, M. L.; Valenzuela, B. R.; Staska, L. M.; Harbo, S. J.; Peirce, J. T.; Dill, J. A. Toxicological Science 2008, 101(1), 122.
  21. Solonin, Y. M.; Gravoronskaya, E. A.; Galii, O. Z. Powder Metallurgy and Metal Ceramics 2001, 40, 618. https://doi.org/10.1023/A:1015292222589
  22. Nayak, P. L.; Alva, S.; Yang, K.; Dhal, P. K.; Kumar, J.; Tripathy, S. K. Macromolecules 1997, 30, 7351. https://doi.org/10.1021/ma970318k

Cited by

  1. Fullerenes vol.109, pp.1460-4760, 2013, https://doi.org/10.1039/c3ic90012f
  2. Merrifield resin supported peroxomolybdenum(vi) compounds: recoverable heterogeneous catalysts for the efficient, selective and mild oxidation of organic sulfides with H2O2 vol.15, pp.10, 2013, https://doi.org/10.1039/c3gc40304a
  3. Enhanced thermal stability of poly(methyl methacrylate) composites with fullerenes vol.72, pp.7, 2015, https://doi.org/10.1007/s00289-015-1370-z
  4. Perspectives of Polystyrene Composite with Fullerene, Carbon Black, Graphene, and Carbon Nanotube: A Review vol.55, pp.18, 2016, https://doi.org/10.1080/03602559.2016.1185632
  5. Surface analysis of nitrogen plasma-treated C60/PS nanocomposite films for antibacterial activity vol.43, pp.2, 2017, https://doi.org/10.1007/s10867-017-9447-6
  6. as an oxidant vol.8, pp.60, 2018, https://doi.org/10.1039/C8RA05969A
  7. Synthesis and characterization of C60‐based composites of amphiphilic N‐vinylpyrrolidone/triethylene glycol dimethacrylate copolymers vol.35, pp.7, 2012, https://doi.org/10.1002/pc.22788
  8. Molecular engineering of functionalized crown ether resins for the isotopic enrichment of gadolinium: from computer to column chromatography vol.2, pp.5, 2012, https://doi.org/10.1039/c7me00076f
  9. Promising effect of combining [60]Fullerene nanoparticles and calcium hydroxide on thermal stability and flammability of Poly(ethylene-co-vinyl acetate) vol.668, pp.None, 2018, https://doi.org/10.1016/j.tca.2018.08.013
  10. Polymer immobilized tantalum(V)-amino acid complexes as selective and recyclable heterogeneous catalysts for oxidation of olefins and sulfides with aqueous H2O2 vol.43, pp.44, 2012, https://doi.org/10.1039/c9nj04180j
  11. Selective and solventless oxidation of organic sulfides and alcohols using new supported molybdenum (VI) complex in microwave and conventional methods vol.34, pp.9, 2012, https://doi.org/10.1002/aoc.5781
  12. A sustainable approach towards solventless organic oxidations catalyzed by polymer immobilized Nb(V)-peroxido compounds with H2O2 as oxidant vol.516, pp.None, 2012, https://doi.org/10.1016/j.mcat.2021.111988