DOI QR코드

DOI QR Code

DFT/B3LYP Study to Investigate the Possible Ways for the Synthesize of Antioxidants with High Efficiency Based on Vitamin E

  • Najafi, Meysam (Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences) ;
  • Najafi, Mohammad (Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences) ;
  • Najafi, Houshang (Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences)
  • Received : 2012.05.14
  • Accepted : 2012.07.16
  • Published : 2012.10.20

Abstract

The possible ways for increasing the antioxidant properties of vitamin E have been investigated with density function theory. The effect of replacing three methyl groups of vitamin E with various substituents such as electron donating and electron withdrawing groups on the antioxidant properties of vitamin E were investigated. Also the effects of the reducing the number of atoms in the heterocyclic ring and replacing the oxygen heteroatom with other heteroatoms on the antioxidant properties of vitamin E were investigated. The novel structures that obtained from replacing methyl groups with substituents such as $NH_2$, OH, COOH and NHMe have greater antioxidant activity than vitamin E. Obtained results reveal that novel structure that obtained with replacing O with NH hetroatom would be a better antioxidant than vitamin E. The results reveal that reducing the number of atoms in the heterocyclic ring is a better way to synthesize novel antioxidants.

Keywords

References

  1. Pryor, W. A. Free Radic. Biol. Med. 2000, 28, 141. https://doi.org/10.1016/S0891-5849(99)00224-5
  2. Niki, E. Free Radic. Res. 2000, 33, 693. https://doi.org/10.1080/10715760000301221
  3. Wang, X.; Quinn, P. J. Prog. Lipid Res. 1999, 38, 309. https://doi.org/10.1016/S0163-7827(99)00008-9
  4. Burton, G. W.; Ingold, K. U. Acc. Chem. Res. 1986, 19, 194. https://doi.org/10.1021/ar00127a001
  5. Wright, J. S.; Johnson, E. R.; Dilabio, G. A. J. Am. Chem. Soc. 2001, 123, 1173. https://doi.org/10.1021/ja002455u
  6. Vafiadis, A. P.; Bakalbassis, E. G. Chem. Phys. 2005, 316, 195. https://doi.org/10.1016/j.chemphys.2005.05.015
  7. Musialik, M.; Litwinienko, G. Org. Lett. 2005, 7, 4951. https://doi.org/10.1021/ol051962j
  8. Zhang, H. Y.; Ji, H. F. J. Mol. Struct: (Theochem). 2005, 663, 167.
  9. Zhang, H. Y.; Sun, Y. M.; Wang, X. L. J. Org. Chem. 2002, 67, 2709. https://doi.org/10.1021/jo016234y
  10. Pratt, D. A.; Dilabio, G. A.; Brigati, G.; Pedulli, G. F.; Valgimigli, L. J. Am. Chem. Soc. 2001, 123, 4625. https://doi.org/10.1021/ja005679l
  11. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. https://doi.org/10.1021/cr020033s
  12. Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2003, 68, 3433. https://doi.org/10.1021/jo026917t
  13. Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2004, 69, 5888. https://doi.org/10.1021/jo049254j
  14. Foti, M. C.; Daquino, C.; Geraci, C. J. Org. Chem. 2004, 69, 2309. https://doi.org/10.1021/jo035758q
  15. Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2005, 70, 8982. https://doi.org/10.1021/jo051474p
  16. Vianello, R.; Maksic, Z. B. Tetrahedron 2006, 62, 3402. https://doi.org/10.1016/j.tet.2006.01.049
  17. Fujio, M.; McIver, R. T., Jr.; Taft, R. W. J. Am. Chem. Soc. 1981, 103, 4017. https://doi.org/10.1021/ja00404a008
  18. McMahon, T. B.; Kebarle, P. J. Am. Chem. Soc. 1977, 99, 2222. https://doi.org/10.1021/ja00449a032
  19. Wang, L. F.; Zhang, H. Y. Bioorg. Chem. 2005, 33, 108. https://doi.org/10.1016/j.bioorg.2005.01.002
  20. Navarrete, M.; Rangel, C.; Corchado, J. C.; Espinosa-Garcia, J. J. Phys. Chem. A 2005, 109, 4777. https://doi.org/10.1021/jp050717e
  21. Navarrete, M.; Rangel, C.; Espinosa-Garcýa, J.; Corchado, J. C. J. Chem. Theory. Comput. 2005, 1, 337.
  22. Wayner, D. D. M.; Lusztyk, E.; Ingold, K. U.; Mulder, P. J. Org. Chem. 1986, 61, 6430.
  23. Nikolic, M. K. J. Mol. Struct: (THEOCHEM) 2007, 818, 141. https://doi.org/10.1016/j.theochem.2007.05.011
  24. Chen, W.; Song, J.; Guo, P.; Cao, W.; Bian, J. Bioorg. Med. Chem. Lett. 2006, 16, 5874. https://doi.org/10.1016/j.bmcl.2006.08.063
  25. Lucarini, M.; Pederielli, P.; Pedulli, G. F.; Cabiddu, S.; Fattuoni, C. J. Org. Chem. 1996, 61, 9259. https://doi.org/10.1021/jo961039i
  26. Klein, E.; Lukes, V.; Ilcin, M. Chem. Phys. 2007, 336, 51. https://doi.org/10.1016/j.chemphys.2007.05.007
  27. Mohajeri, A.; Asemani, S. S. J. Mol. Struct: (THEOCHEM) 2009, 930, 15. https://doi.org/10.1016/j.molstruc.2009.04.031
  28. Burton, G. W.; Hughes, L.; Ingold, K. U. J. Am. Chem. Soc. 1983, 105, 5950. https://doi.org/10.1021/ja00356a057
  29. Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, L.; Lee, F. L.; Prasad, L.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 7053. https://doi.org/10.1021/ja00310a049
  30. Robillard, B.; Ingold, K. U. Tetrahedron Lett. 1986, 27, 2817. https://doi.org/10.1016/S0040-4039(00)84650-X
  31. Robillard, B.; Hughes, L.; Slaby, M.; Lindsay, D. A. Ingold, K. U. J. Org. Chem. 1986, 51, 1700. https://doi.org/10.1021/jo00360a013
  32. Najafi, M.; Haghighi Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 969, 1. https://doi.org/10.1016/j.comptc.2011.05.006
  33. Najafi, M.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 978, 16. https://doi.org/10.1016/j.comptc.2011.09.014
  34. Najafi, M.; Nazarparvar, E.; Haghighi Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 965, 114. https://doi.org/10.1016/j.comptc.2011.01.035
  35. Shanks, D.; Amorati, R.; Fumo, M. G.; Pedulli, G. F.; Valgimigli, L.; Engman, L. J. Org. Chem. 2006, 71, 1033. https://doi.org/10.1021/jo052133e
  36. Al-Maharik, N.; Engman, L.; Malmstrom, J.; Schiesser, C. H. J. Org. Chem. 2001, 66, 6286. https://doi.org/10.1021/jo010274k
  37. Ceccarelli, S.; Devellis, P.; Scuri, R.; Zanarella, S. J. Heterocycl. Chem. 1990, 30, 679.
  38. Sun, Y. M.; Zhang, H. Y.; Chen, D. Z.; Liu, C. B. Org. Lett. 2002, 17, 2909.
  39. Chen, W. J.; Guo, P.; Song, J. R.; Cao, W.; Bian, J. J. Mol. Struct: (THEOCHEM) 2006, 763, 161. https://doi.org/10.1016/j.theochem.2005.12.035
  40. DiLabio, G. A.; Pratt, D. A.; LoFaro, A. D.; Wright, J. S. J. Phys. Chem. A 1999, 103, 1653. https://doi.org/10.1021/jp984369a
  41. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  42. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  43. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  44. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowsk, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaroni, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M. R. E. S.; Pople, J. A. Gaussian 98, Gaussian, Inc, Pittsburgh, PA, 1998.
  45. Chandra, A. K.; Uchimaru, T. Int. J. Mol. Sci. 2002, 3, 407. https://doi.org/10.3390/i3040407
  46. Bizarro, M. M.; Costa Cabral, B. J.; Borgesdos Santos, R. M.; Martinho Simões, J. A. Pure. Appl. Chem. 1999, 71, 1249. https://doi.org/10.1046/j.1365-3075.1999.00279.x
  47. Grisar, J. M.; Petty, M. A.; Bolkenius, F. N.; Dow, J.; Wagner, J.; Wagner, E. R.; Haegele, K. D.; De, J. W. J. Med. Chem. 1991, 34, 257. https://doi.org/10.1021/jm00105a040
  48. Bolkenius, F. N.; Grisar, J. M.; De, J. W. Free Radic. Res. Commun. 1991, 14, 363. https://doi.org/10.3109/10715769109093425
  49. DiLabio, G. A.; Pratt, D. A.; Wright, J. S. Chem. Phys. Lett. 1999, 311, 215. https://doi.org/10.1016/S0009-2614(99)00786-1
  50. DiLabio, G. A.; Pratt, D. A.; Wright, J. S. J. Org. Chem. 2000, 65, 2195. https://doi.org/10.1021/jo991833e
  51. Koopmans, T. Physica 1933, 1, 104.
  52. Migliavacca, E.; Carrupt, P. A.; Testa, B. Helv. Chim. Acta 1997, 80, 1613. https://doi.org/10.1002/hlca.19970800519
  53. Zhang, H. Y. J. Am. Oil. Chem. Soc. 1998, 75, 1705. https://doi.org/10.1007/s11746-998-0320-4
  54. Zhang, H. Y. J. Am. Oil. Chem. Soc. 1999, 76, 1109.
  55. Kanchev, V. D.; Saso, L.; Boranova, P, V.; Khan, A.; Saroj, M. K.; Pandey, M. K.; Malhotra, S.; Nechev, J. Z.; Sharma, S. K.; Prasad, A. K.; Georgieva, M. B.; Joseph, C.; DePass, A. L.; Rastogi, R. C.; Parmar, V. S. Biochimie. 2010, 92, 1089. https://doi.org/10.1016/j.biochi.2010.06.012
  56. Lavarda, F. C. Int. J. Quant. Chem. 2003, 95, 219. https://doi.org/10.1002/qua.10692
  57. Bi, W.; Bi, Y.; Xue, P.; Zhang, Y.; Gao, X.; Wang, Z.; Li, M.; Baudy-Floch, M.; Ngerebara, N.; Gibson, K. M.; Bi, L. J. Med. Chem. 2010, 53, 6763. https://doi.org/10.1021/jm100529e
  58. Zahalka, H. A.; Robillard, B.; Hughes, L.; Lusztyk, J.; Burton, G. W.; Janzen, E. G.; Kotake, Y.; Ingold, K. U. J. Org. Chem. 1988, 53, 3739. https://doi.org/10.1021/jo00251a014

Cited by

  1. Antioxidant activity of omega-3 derivatives and their delivery via nanocages and nanocones: DFT and experimental in vivo investigation vol.23, pp.11, 2017, https://doi.org/10.1007/s00894-017-3504-8
  2. Theoretical and Experimental in vivo Study of Antioxidant Activity of Crocin in Order to Propose Novel Derivatives with Higher Antioxidant Activity and Their Delivery via Nanotubes and Nanocones vol.40, pp.5, 2017, https://doi.org/10.1007/s10753-017-0623-4
  3. Calculated antioxidant activity of selected phenolic compounds vol.96, pp.3, 2018, https://doi.org/10.1139/cjc-2017-0496