DOI QR코드

DOI QR Code

Impedance and Thermodynamic Analysis of Bioanode, Abiotic Anode, and Riboflavin-Amended Anode in Microbial Fuel Cells

  • Jung, Sok-Hee (Sustainability Consulting Group, Samsung SDS) ;
  • Ahn, Young-Ho (School of Civil and Environmental Engineering, Yeungnam University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University) ;
  • Lee, Jun-Ho (Department of Environmental Engineering, Korea University of Transportation) ;
  • Cho, Kyu-Taek (Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory) ;
  • Kim, Young-Jin (Sustainability Consulting Group, Samsung SDS) ;
  • Kim, Myeong-Woon (Department of Environmental Engineering, Daejin University) ;
  • Shim, Joon-Mok (Korea Institute of Energy Research) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University)
  • Received : 2012.06.28
  • Accepted : 2012.07.17
  • Published : 2012.10.20

Abstract

Understanding exoelectrogenic reactions of the bioanode is limited due to its complexity and the absence of analytics. Impedance and thermodynamics of bioanode, abiotic anode, and riboflavin-amended anode were evaluated. Activation overpotential of the bioanode was negligible compared with that of the abiotic anode. Impedance spectroscopy shows that the bioanode had much lower charge transfer resistance and higher capacitance than the abiotic anode in low frequency reaction. In high frequency reaction, the impedance parameters, however, were relatively similar between the bioanode and the abiotic anode. At open-circuit impedance spectroscopy, a high frequency arc was not detected in the abiotic anode in Nyquist plot. Addition of riboflavin induced a phase angle shift and created curvature in high-frequency arc of the abiotic anode, and it also drastically changed impedance spectra of the bioanode.

Keywords

References

  1. Jung, S.; Regan, J. M. Appl. Environ. Microbiol. 2011, 77, 564. https://doi.org/10.1128/AEM.01392-10
  2. Logan, B. E.; Regan, J. M. Trends in Microbiology 2006, 14, 512. https://doi.org/10.1016/j.tim.2006.10.003
  3. Marcus, A. K.; Torres, C. I.; Rittmann, B. E. Biotechnol. Bioeng. 2007, 98, 1171. https://doi.org/10.1002/bit.21533
  4. Pham, T. H.; Aelterman, P.; Verstraete, W. Trends in Biotechnology 2009, 27, 168. https://doi.org/10.1016/j.tibtech.2008.11.005
  5. Torres, C. I.; Marcus, A. K.; Lee, H. S.; Parameswaran, P.; Krajmalnik-Brown, R.; Rittmann, B. E. FEMS Microbiology Reviews 2010, 34, 3. https://doi.org/10.1111/j.1574-6976.2009.00191.x
  6. Ha, P. T.; Moon, H.; Kim, B. H.; Ng, H. Y.; Chang, I. S. Biosens. Bioelectron. 2010, 25, 1629. https://doi.org/10.1016/j.bios.2009.11.023
  7. Wang, X.; Feng, Y.; Ren, N.; Wang, H.; Lee, H.; Li, N.; Zhao, Q. Electrochimica Acta 2009, 54, 1109. https://doi.org/10.1016/j.electacta.2008.07.085
  8. Hong, Y.; Call, D. F.; Werner, C. M.; Logan, B. E. Biosens. Bioelectron. 2011, 28, 71. https://doi.org/10.1016/j.bios.2011.06.045
  9. Manohar, A. K.; Bretschger, O.; Nealson, K. H.; Mansfeld, F. Electrochimica Acta 2008, 53, 3508. https://doi.org/10.1016/j.electacta.2007.12.002
  10. Marsili, E.; Rollefson, J. B.; Baron, D. B.; Hozalski, R. M.; Bond, D. R. Appl. Environ. Microbiol. 2008, 74, 7329. https://doi.org/10.1128/AEM.00177-08
  11. Ramasamy, R. P.; Ren, Z. Y.; Mench, M. M.; Regan, J. M. Biotechnol. Bioeng. 2008, 101, 101. https://doi.org/10.1002/bit.21878
  12. Borole, A. P.; Aaron, D.; Hamilton, C. Y.; Tsouris, C. Environ. Sci. Technol. 2010, 44, 2740. https://doi.org/10.1021/es9032937
  13. von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J. R. Appl. Environ. Microbiol. 2008, 74, 615. https://doi.org/10.1128/AEM.01387-07
  14. Jung, S.; Mench, M. M.; Regan, J. M. Environ. Sci. Technol. 2011, 45, 9069. https://doi.org/10.1021/es201737g
  15. He, Z.; Mansfeld, F. Energy & Environmental Science 2009, 2, 215. https://doi.org/10.1039/b814914c
  16. Ouitrakul, S.; Sriyudthsak, M.; Charojrochkul, S.; Kakizono, T. Biosens. Bioelectron. 2007, 23, 721. https://doi.org/10.1016/j.bios.2007.08.012
  17. Cheng, C.-H.; Hung, C.-H.; Lee, K.-S.; Liau, P.-Y.; Liang, C.-M.; Yang, L.-H.; Lin, P.-J.; Lin, C.-Y. Inter. J. Hydrogen Energy 2008, 33, 5242. https://doi.org/10.1016/j.ijhydene.2008.05.017
  18. Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Environ. Sci. Technol. 2007, 41, 3341. https://doi.org/10.1021/es062644y
  19. Jung, S.; Regan, J. M. Appl. Microbiol. Biotechnol. 2007, 77, 393. https://doi.org/10.1007/s00253-007-1162-y
  20. Macdonald, J. R. Ann. Biomed. Eng. 1992, 20, 289. https://doi.org/10.1007/BF02368532
  21. Wagner, N. J. Appl. Electrochem. 2002, 32, 859. https://doi.org/10.1023/A:1020551609230
  22. Larminie, J.; Dicks, A. Fuel Cell System Explained; Wiley: West Sussex, 2002.
  23. Bard, A.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: 2001.
  24. Xing, D.; Cheng, S.; Regan, J. M.; Logan, B. E. Biosens. Bioelectron. 2009, 25, 105. https://doi.org/10.1016/j.bios.2009.06.013
  25. Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science 2002, 295, 483. https://doi.org/10.1126/science.1066771
  26. Lee, H.-S.; Parameswaran, P.; Kato-Marcus, A.; Torres, C. I.; Rittmann, B. E. Water Res. 2008, 42, 1501. https://doi.org/10.1016/j.watres.2007.10.036
  27. Logan, B. E. Nat. Rev. Micro. 2009, 7, 375. https://doi.org/10.1038/nrmicro2113
  28. Mahadevan, R.; Bond, D. R.; Butler, J. E.; Esteve-Nunez, A.; Coppi, M. V.; Palsson, B. O.; Schilling, C. H.; Lovley, D. R. Appl. Environ. Microbiol. 2006, 72, 1558. https://doi.org/10.1128/AEM.72.2.1558-1568.2006
  29. Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Proc. Natl. Acad Sci. U S A 2008, 105, 3968. https://doi.org/10.1073/pnas.0710525105
  30. Mench, M. M. Fuel Cell Engines; John Wiley and Sons, Inc.: New York, 2008.

Cited by

  1. Electricity Generation by Shewanella decolorationis S12 without Cytochrome c vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01115
  2. A facile method for preparation of efficient oxygen reduction catalyst for a microbial fuel cell cathode vol.22, pp.1, 2018, https://doi.org/10.1007/s12205-017-0111-2
  3. Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance vol.23, pp.4, 2018, https://doi.org/10.4491/eer.2017.171
  4. Assessment of microbial diversity bias associated with soil heterogeneity and sequencing resolution in pyrosequencing analyses vol.52, pp.7, 2012, https://doi.org/10.1007/s12275-014-3636-9
  5. Recent Trends of Oxygen Reduction Catalysts in Microbial Fuel Cells: A Review vol.41, pp.11, 2019, https://doi.org/10.4491/ksee.2019.41.11.657
  6. Oxygen-deficient TiO2 decorated carbon paper as advanced anodes for microbial fuel cells vol.366, pp.None, 2012, https://doi.org/10.1016/j.electacta.2020.137468
  7. Polypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell vol.46, pp.None, 2021, https://doi.org/10.1016/j.seta.2021.101268
  8. Semiconducting Minerals Participated Extracellular Electron Transfer Process in High-Altitude Red Soil from Gansu, China vol.38, pp.10, 2021, https://doi.org/10.1080/01490451.2021.1977435
  9. Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation vol.424, pp.None, 2012, https://doi.org/10.1016/j.cej.2021.130388