DOI QR코드

DOI QR Code

블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant

  • 이정섭 (한국과학기술원 항공우주공학과) ;
  • 장동욱 (한국과학기술원 항공우주공학과) ;
  • 권세진 (한국과학기술원 항공우주공학과)
  • 투고 : 2011.11.29
  • 심사 : 2012.09.14
  • 발행 : 2012.10.01

초록

친환경 추진제인 과산화수소의 성능 향상을 위해 블렌딩 기법을 적용하였다. 90 wt.% 과산화수소에 독성이 낮은 에탄올을 블렌딩 하였으며, 저장성 평가 결과 연료에 의한 저장성 저하는 나타나지 않았다. 재료 적합성 및 내열 평가 결과 Inconel X750과 Topheat A가 높은 적합성과 내열 특성을 보였으며, SUS 316L 역시 적합성이 우수하였다. 내열 특성 향상을 위해 $Al_2O_3$, $Y_2O_3$, $ZrO_2$를 코팅 후 내구성 평가를 수행한 결과, $Y_2O_3$ 코팅은 사용이 부적합하였으며, 재료의 사용 가능 온도가 코팅의 접착성과 관련이 있음을 확인하였다. 블렌딩 기법을 통한 성능 향상을 확인하기 위해 추력기 실험을 진행하였으며, 실험 결과 반응기 온도가 $870^{\circ}C$로, 90 wt.% 과산화수소의 단열 분해 온도인 $760^{\circ}C$보다 높음을 확인하였다.

Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. $Al_2O_3$, $Y_2O_3$, and $ZrO_2$, were coated on the material to improve heat resistance, and it was proved from endurance test that $Y_2O_3$ coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

키워드

참고문헌

  1. Jaime Esper, Steven Neeck, James A. Slavin, Jesse Leitner, Warren Wiscombe, and Frank H. Bauer, "Nano/Micro Satellite Constellations for Earth and Space Science," Acta Astronautica, Vol. 52, No. 9-12, 2003, pp.785-791 https://doi.org/10.1016/S0094-5765(03)00054-7
  2. Wallace K., Brooks P., Waston C., Levett W., Morris N., Gray P., Waltham N., Harrison J., Phipps A., and Child S., "The Topsat Satellite," Aircraft Engineering and Aerospace Technology, Vol. 74, No. 4, 2001, pp.380-382
  3. Stacy Christofferson and Wucherer E. J., "Demonstration of Hydrazine Propellant Blend Cpabilities for Small Satellites," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2000-3880, 2000
  4. Tapley B. D., Bettadpur S., Watkins M., and Reigber Ch., "The Gravity Recovery and Climate Experiment: Mission Overview and Early Results," Geophysical Research Letter, Vol 31, L09607, doi:10.1029/2004GL019920, 2004
  5. 이정섭, 안성용, 권세진, "하이드라진 추력기의 특성 및 연구사례 조사," 제 14차 유도무기 학술대회, 2007, pp.682-686
  6. Olwen M. Morgan and Dennis S. Meinhardt, "Monopropellant Selection Criteria-Hydrazine and Other Options," 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-1999-2595, 1999
  7. K. Anflo, S. Persson, P. Thormahlen, G. Bergman, and T. Hasanof, "Flight Demonstration of an ADN-Based Propulsion System on the PRISMA Satellite," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2006-5212, 2006
  8. Air Force Rocket Propulsion Laboratory, Hydrogen Peroxide Handbook, Technical Report AFRPL-TR-67-144, 1967
  9. James McCormick, Hydorgen Peroxide Rocket Manual, FMC Corporation, 1965