DOI QR코드

DOI QR Code

Measurement of Large Mirror Surface using a Laser Tracker

레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정

  • Jo, Eun-Ha (Department of Measurement Science, University of Science and Technology) ;
  • Yang, Ho-Soon (Department of Measurement Science, University of Science and Technology) ;
  • Lee, Yun-Woo (Space Optics Research Center, Korea Research Institute of Standards and Science)
  • 조은하 (과학기술연합대학원대학교 측정과학과) ;
  • 양호순 (과학기술연합대학원대학교 측정과학과) ;
  • 이윤우 (한국표준과학연구원 우주광학센터)
  • Received : 2013.10.01
  • Accepted : 2013.11.15
  • Published : 2013.12.25

Abstract

A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

대형 광학 거울은 연삭, 연마, 최종연마의 단계를 거쳐 가공된다. 이 가운데 가장 진행이 빠르고 가공량이 많은 연삭 단계에서 정밀하고 신속한 측정이 가능하다면 가공 공정의 효율성을 높일 수 있다. 그런데 연삭 단계의 광학면은 거칠고 광택이 없기 때문에 빛을 이용한 측정이 매우 어렵다. 따라서 간섭계를 사용할 수 없으며 기계적인 방법을 이용하여 면을 측정해야 한다. 레이저트래커는 이동이 가능한 3차원 좌표 측정기로, 이를 이용한 측정 방법이나 데이터 분석을 연구하면 연삭 단계의 광학 거울을 정밀하게 측정할 수 있다. 본 논문에서는 레이저트래커를 이용하여 직경 1 m의 구면 거울의 형상오차를 측정하고, 이 측정 결과를 간섭계로 측정한 것과 비교하였다. 레이저트래커를 이용한 측정법은 형상오차 rms $0.2{\mu}m$, PV $2.7{\mu}m$의 측정 결과를 얻는 것으로 파악되어 연삭 단계 광학면의 정밀한 측정이 가능할 것으로 보인다.

Keywords

References

  1. GMT (Giant Magellan Telescope), "Giant Magellan telescope," http://www.gmto.org/.
  2. VLT (Very Large Telescope), "Very large telescope," http://www.eso.org/public/teles-instr/vlt/.
  3. LBT (Large Binocular Telescope), "Large binocular telescope," http://www.lbto.org/.
  4. EELT (European Extremely Large Telescope), "European extremely large telescope," http://www.eso.org/sci/facilities/eelt/.
  5. TMT (Thirty Meter Telescope), "Thirty meter telescope," http://www.tmt.org/.
  6. W. H. Park, "Stylus profilometer with bar type reference mirror for large optical surface testing," Msc Thesis, Yonsei University, Seoul, Korea (2007).
  7. D. S. Anderson and J. H. Burge, "Swing-arm profilometry of aspherics," Proc. SPIE 2536, 169 (1995).
  8. T. L. Zobrist, "Application of laser tracker technology for measuring optical surfaces," Ph.D. Thesis, University of Arizona, Tuscan, USA (2009).
  9. G. J. Jung, "Distortion compensation technique for reference mirror subsystem for tower mounted 1 m profilometer," Msc Thesis, Yonsei University, Seoul, Korea (2013).
  10. Leica Laser Tracker, "Laser tracker AT901," http://www.leica-geosystems.com/en/Laser-Tracker-Systems_69045.htm/.
  11. S. C. Choi, H. S. Kim, C. W. Kim, Y. S. Kim, G. W. Lee, and H. K. Kim, "Sensitivity analysis of 20:1 zoom infrared optical system with zernike polynomial coefficients," J. Opt. Soc. Korea 14, 535-544 (2003). https://doi.org/10.3807/KJOP.2003.14.5.535

Cited by

  1. Study on Accuracy Evaluation of Laser Lens Changer for a Laser-Assisted Machining System vol.32, pp.8, 2015, https://doi.org/10.7736/KSPE.2015.32.8.687