DOI QR코드

DOI QR Code

Magnetic and Magnetocaloric Properties of Perovskite Pr0.5Sr0.5-xBaxMnO3

  • Hua, Sihao (College of Material Science and Engineering, China Jiliang University) ;
  • Zhang, Pengyue (College of Material Science and Engineering, China Jiliang University) ;
  • Yang, Hangfu (College of Material Science and Engineering, China Jiliang University) ;
  • Zhang, Suyin (College of Material Science and Engineering, China Jiliang University) ;
  • Ge, Hongliang (College of Material Science and Engineering, China Jiliang University)
  • Received : 2013.05.15
  • Accepted : 2013.08.30
  • Published : 2013.12.31

Abstract

This paper studies the effects of A-site substitution by barium on the magnetic and magnetocaloric properties of $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ (x = 0, 0.04, 0.08 and 0.1). The tetragonal crystal structures of the samples are confirmed by room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ba doping content has been investigated. The samples of all doping contents undergo the second order phase transition. As the concentration of Ba increased, the maximum entropy change ($|{\Delta}S_M|_{max}$) increased gradually, from 1.15 J $kg^{-1}$ $K^{-1}$ (x = 0) to 1.36 J $kg^{-1}$ $K^{-1}$ (x = 0.1), in a magnetic field change of 1.5 T. The measured value of $T_C$ is 265 K, 275 K, 260 K and 250 K for x = 0, 0.04, 0.08 and 0.1, respectively. If combining these samples for magnetic refrigeration, the temperature range of ~220 K and 290 K, where |${\Delta}S_M$|max is stable at ~1.27 J $kg^{-1}$ $K^{-1}$ and RCP = 88.9 $J{\cdot}kg^{-1}$ for ${\Delta}H$ = 1.5 T. $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ compounds, are expected to be suitable for magnetic-refrigeration application due to these magnetic properties.

Keywords

References

  1. V. K. Pecharsky and K. A. Gschneidner, J. Magn. Magn. Mater. 200, 44 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2
  2. K. A. Gschneidner and V. K. Pecharsky, Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04
  3. E. Bruck, J. Phys. D 38, R381 (2005). https://doi.org/10.1088/0022-3727/38/23/R01
  4. M. H. Phan and S. C Yu, J. Magn. Magn. Mater. 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025
  5. S. Yu. Dankov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner Jr., Phys. Rev. B 57, 3478 (1998).
  6. F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, and X. X. Zhang, Appl. Phys. Lett. 78, 3675 (2001). https://doi.org/10.1063/1.1375836
  7. V. K. Pecharsky, and K. A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997). https://doi.org/10.1063/1.119206
  8. O. Tegus, E. Bruck, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002). https://doi.org/10.1038/415150a
  9. X. X. Zhang, J. Taiada, Y. Xin, G. F. Sunm, K. W. Wong, and X. Bohigas, Appl. Phys. Lett. 69, 3596 (1996). https://doi.org/10.1063/1.117218
  10. A. Szewczyk, H. Szymczak, A. Wisniewski, K. Piotrowski, R. Kartaszynski, B. Dabrowski, S. Kolesnik, and Z. Bukowski, Appl. Phys. Lett. 77, 1026 (2000). https://doi.org/10.1063/1.1288671
  11. Y. Sun, X. Xu, and Y. H. Zhang, J. Magn. Magn. Mater. 219, 183 (2000). https://doi.org/10.1016/S0304-8853(00)00433-9
  12. A. Biswas, T. Samanta, S. Benerjee, and I. Das, Appl. Phys. Lett. 94, 233109 (2009). https://doi.org/10.1063/1.3152785
  13. E. Pollert, Z. Jirak, J. Hejtmanek, A. Strejc, R. Kuzel, and V. Hardy, J. Magn. Magn. Mater. 246, 290 (2002). https://doi.org/10.1016/S0304-8853(02)00076-8
  14. T. Wu, and M. Mitchell, Phys. Rev. B 69, 100405(R) (2004). https://doi.org/10.1103/PhysRevB.69.100405
  15. S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, R. Mahendiran, and P. Schiffer, Eur. Phys. J. B 29, 419 (2002). https://doi.org/10.1140/epjb/e2002-00324-5
  16. R. Mahandiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell, and P. Schiffer, Phys. Rev. Lett. 89, 286602 (2002). https://doi.org/10.1103/PhysRevLett.89.286602
  17. H. F. Yang, P. Y. Zhang, Q. Wu, H. L. Ge, and M. X. Pan, J. Magn. Magn. Mater. 324, 3727 (2012). https://doi.org/10.1016/j.jmmm.2012.06.004
  18. M-H Phan, S. B. Tian, S. C. Yu, and A. N. Ulyanov, J. Magn. Magn. Mater. 256, 306 (2003). https://doi.org/10.1016/S0304-8853(02)00584-X
  19. R. D. Shannon, Acta Cryst. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  20. V. Franco, J. S. Blazquez, B. Ingale, and A. Conde, Mater. Res. 42, 305 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356
  21. J. Dhahri, A. Dhahri, and E. Dhahri, J. Magn. Magn. Mater. 321, 4128 (2009). https://doi.org/10.1016/j.jmmm.2009.08.014
  22. N. Abdelmoula, J. Dhahri, K. Guidara, E. Dhahri, and J. C. Joubert, Phase Tran-sit. 70, 211 (1999). https://doi.org/10.1080/01411599908240685
  23. M. Moumen, A. Mehri, W. Chikhrouhou-Koubaa, M. Koubaa, and A. Cheikhrouhou, J. Alloys Compd. 509, 9084 (2011). https://doi.org/10.1016/j.jallcom.2011.06.045
  24. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 78, 1142 (1997). https://doi.org/10.1103/PhysRevLett.78.1142
  25. K. A. Gschneidner and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387
  26. Y. D. Zhang, The-Long Phan, and S. C. Yu, J. Appl. Phys. 111, 07D703 (2012). https://doi.org/10.1063/1.3670974
  27. S. Zemni, M. Baazaoui, Ja. Dhahri, H. Vincent, and M. Oumezzine, Materials Letters. 63, 489 (2009). https://doi.org/10.1016/j.matlet.2008.11.019
  28. J. Y. Fan, L. Pi, L. Zhang, W. Tong, and L. S. Ling, Physica B 406, 2289 (2011). https://doi.org/10.1016/j.physb.2011.03.056
  29. V. K. Pecharsky and K. A. Gschneidner, J. Appl. Phys. 90, 4614 (2001). https://doi.org/10.1063/1.1405836
  30. B. K. Banerjee, Phys. Lett. 12, 16 (1964).
  31. K. Cherif, S. Zemni, J. Dhahri, M. Oumezzine, M. Said, and H. Vincent, J. Alloys Compd. 432, 30 (2007). https://doi.org/10.1016/j.jallcom.2006.06.007