DOI QR코드

DOI QR Code

Effect of Copper Substitution on Structural and Magnetic Properties of NiZn Ferrite Nanopowders

  • Niyaifar, Mohammad (Department of Physics, Science and Research Branch, Islamic Azad University) ;
  • Shalilian, Hoda (Department of Physics, Science and Research Branch, Islamic Azad University) ;
  • Hasanpour, Ahmad (Department of Physics, Science and Research Branch, Islamic Azad University) ;
  • Mohammadpour, Hory (Department of Physics, Science and Research Branch, Islamic Azad University)
  • Received : 2013.06.23
  • Accepted : 2013.10.09
  • Published : 2013.12.31

Abstract

In this study, nickel-zinc ferrite nanoparticles, with the chemical formula of $Ni_{0.3}Zn_{0.7-x}Cu_xFe_2O_4$ (where x = 0.1- 0.6 by step 0.1), were fabricated by the sol-gel method. The effect of copper substitution on the phase formation and crystal structure of the sample was investigated by X-ray diffraction (XRD), thermo-gravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD result shows that due to the reduction of Zn content,the crystallite size of the sample increased. The results of the vibration sample magnetometer (VSM) exhibit an increase in saturation magnetization value (Ms) for samples with x ${\leq}$ 0.3 and a linear decrease for samples with x > 0.3. The variation of saturation magnetization and coercivity of the samples were then studied.

Keywords

References

  1. S. Yan, J. Yin, and E. Zhou, J. Alloys Compd. 450, 417 (2008). https://doi.org/10.1016/j.jallcom.2006.10.144
  2. H.-W. Wang and S.-C. Kung, J. Magn. Magn. Mater. 270, 230 (2004). https://doi.org/10.1016/j.jmmm.2003.09.019
  3. C. S. Kim, W. C. Kim, S. Y. An, and S. W. Lee, J. Magn. Magn. Mater. 215-216, 213 (2000). https://doi.org/10.1016/S0304-8853(00)00120-7
  4. B. P. Rao, A. M. Kumar, K. H. Rao, Y. L. N. Murthya, O. F. Caltun, I. Dumitruc, and L. Spinuc, J. Optoelectron. Adv. Mater. 8, 1703 (2006).
  5. J. Hu and Y. Mi, J. Zhejiang Univ. Sci. B. 6, 580 (2005).
  6. M. Usakova, J. Luka, R. Dosoudil, V. Jancarik, A. Gruskova, E. Usak, J. Slama, and J. Subrt, J. Mater. Sci.-Mater. Electron. 18, 1183 (2007). https://doi.org/10.1007/s10854-007-9347-9
  7. J. Bera and P. K. Roy, J. Mater. Process. Technol. 197, 279 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.027
  8. S. Zahi, M. Hashim, and A. R. Duad, Mater. Lett. 60, 2803 (2006). https://doi.org/10.1016/j.matlet.2006.01.093
  9. Yu. Liming, Sh. Cao, Y. Liu, J. Wang, Ch. Jing, and J. Zhang, J.Magn. Magn. Mater. 301, 100 (2006). https://doi.org/10.1016/j.jmmm.2005.06.020
  10. R. D. Waldron, Phys. Rev. 99, 1727 (1955). https://doi.org/10.1103/PhysRev.99.1727
  11. M. Reichenbacher and J. Popp, Springer-Verlag, Berlin Heidelberg (2012).
  12. C. Upadhyay, H. C. Verma, and S. Anand, J. Appl. Phys. 95, 5746 (2004). https://doi.org/10.1063/1.1699501
  13. A. Navrotsky and O. J. Kleppa, J. Inorg, Nucl. Chem. 30, 479 (1968). https://doi.org/10.1016/0022-1902(68)80475-0
  14. I. H. Gul, W. Ahmed, and A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008). https://doi.org/10.1016/j.jmmm.2007.05.032
  15. Z. Yue, L. Li, J. Zhou, H. Zhang, and Z. Gui, Mater. Sci. Eng., B 64, 68 (1999). https://doi.org/10.1016/S0921-5107(99)00152-X
  16. M. Atif, S. K. Hasanain, and M. Nadeem, Solid State Commun. 138, 416 (2006). https://doi.org/10.1016/j.ssc.2006.03.023
  17. J. Jacob and M. Abdul Khadar, J. Appl. Phys. 107, 114310 (2010). https://doi.org/10.1063/1.3429202
  18. D.-H. Chen and X.-R. He, Mater. Res. Bull. 36, 1369 (2001). https://doi.org/10.1016/S0025-5408(01)00620-1
  19. V. U. Patil and R. G. Kulkarni, Solid State Commun. 31, 551 (1979). https://doi.org/10.1016/0038-1098(79)90251-5
  20. A. A. Samokhvalov, T. I. Arbuzova, N. A.Viglin, V. V. Osipov, N. I. Solin, S. V. Naumov, V. G. Bamburov, N. I. Lobachevskaya, and O. G. Reznitskikh, Phys. Solid State. 41, 262 (1999). https://doi.org/10.1134/1.1130764
  21. M. Mozaffari, M. Eghbali Arani, and J. Amighian, J. Magn. Magn. Mater. 322, 3240 (2010). https://doi.org/10.1016/j.jmmm.2010.05.053

Cited by

  1. Investigação das propriedades magnéticas e microestrutura da ferrita de chumbo e cobre vol.62, pp.361, 2016, https://doi.org/10.1590/0366-69132016623611927
  2. Structural and electro-magnetic properties of low temperature co-fired BaSrTiO3 and NiCuZn ferrite composites for EMI filter applications vol.28, pp.23, 2017, https://doi.org/10.1007/s10854-017-7759-8
  3. Structural Analysis and Magnetic Properties of Lithium-Doped Ni-Zn Ferrite Nanoparticle pp.1557-1947, 2018, https://doi.org/10.1007/s10948-017-4428-3
  4. INFLUENCES OF CATION DISTRIBUTION OF ZINC SUBSTITUTED ON INVERSE SPINEL NICKEL FERRITE NANOPARTICLE FOR SUPERPARAMAGNETIC APPROACH pp.1793-6667, 2018, https://doi.org/10.1142/S0218625X18500762