DOI QR코드

DOI QR Code

Thermal Stability, Mechanical Properties and Magnetic Properties of Fe-based Amorphous Ribbons with the Addition of Mo and Nb

  • Han, Bo-Kyeong (Department of Physics, Sookmyung Women's University) ;
  • Jo, Hye-In (Department of Physics, Sookmyung Women's University) ;
  • Lee, Jin Kyu (Div. of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Ki Buem (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Yim, Haein (Department of Physics, Sookmyung Women's University)
  • Received : 2013.07.01
  • Accepted : 2013.09.12
  • Published : 2013.12.31

Abstract

The metallic glass ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) were obtained by melt spinning with 25-30 ${\mu}m$ thickness. The thermal stability, mechanical properties and magnetic properties of Fe-Co-B-Si based systems were investigated. The values of thermal stability were measured using differential scanning calorimetry (DSC), including glass transition temperature ($T_g$), crystallization temperature ($T_x$) and supercooled liquid region (${\Delta}T_x=T_x-T_g$). These amorphous ribbons were identified as fully amorphous, using X-ray diffraction (XRD). The mechanical properties of Febased samples were measured by nano-indentation. Magnetic properties of the amorphous ribbons were measured by a vibrating sample magnetometer (VSM). The amorphous ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) exhibited soft magnetic properties with low coercive force ($H_c$) and high saturation magnetization (Ms).

Keywords

References

  1. W. L. Johnson, MRS Bull. 24, 42 (1999). https://doi.org/10.1557/S0883769400053252
  2. W. Klement, R. H. Willens, and P. Duwez, Nature 187, 869 (1960).
  3. Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Science 315, 1385 (2007). https://doi.org/10.1126/science.1136726
  4. A. Inoue, B. L. Shen, and C. T. Chang, Acta Mate. 52, 4093 (2004). https://doi.org/10.1016/j.actamat.2004.05.022
  5. A. R. Yavari, J. J. Lewandowski, and J. Eckert, MRS Bull. 32, 635 (2007). https://doi.org/10.1557/mrs2007.125
  6. J. Eckert, M. Seidel, N. Schlorke, A. Kubler, and L. Schultz, Mater. Sci. Forum 235, 23 (1997).
  7. B. L. Shen, A. Inoue, and C. T. Chang, Appl. Phys. Lett. 85, 4911 (2004). https://doi.org/10.1063/1.1827349
  8. C. T. Chang, B. L. Shen, and A. Inoue, Mater. Sci. Eng. A 449, 239 (2007).
  9. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta Mater. 50, 489 (2002). https://doi.org/10.1016/S1359-6454(01)00366-4
  10. S. F. Guo, L. Liu, N. Li, and Y. Li, Scri. Mater. 62, 329 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.024
  11. A. Inoue and A. Makino, Nano. Mater. 9, 403 (1997). https://doi.org/10.1016/S0965-9773(97)00093-7
  12. A. Inoue, Mater. Sci. Eng. 304, 1 (2001).
  13. R. B. Schwarz, T. D. Shen, V. Harms, and T. Lillo, J. Magn. Magn. Mater. 283, 223 (2004). https://doi.org/10.1016/j.jmmm.2004.05.026
  14. K. Hayashi, M. Hayakawa, Y. Ochiai, H. Matsuda, W. Ishikawa, and K. Aso, J. Appl. Phys. 61, 2983 (1987). https://doi.org/10.1063/1.337848
  15. A. Datta and C. H. Smith, Rapidly Quenched Metals, vol. eds. S. Steeb and H. Warlimont, North-Holland, Amsterdam, Oxford, New York, Tokyo (1985), p. 1315.
  16. T. Komatsu, S. Sato, and K. Matusita, Acta. Mater. 34, 1899 (1986). https://doi.org/10.1016/0001-6160(86)90248-8
  17. B. L. Shen, C. T. Chang, T. Kubota, and A. Inoue, J. Appl. Phys. 100, 013515 (2006). https://doi.org/10.1063/1.2211207
  18. N. Dwivedi, S. Kumar, and H. K. Malik, App. Surf. Sci. 257, 9953 (2011). https://doi.org/10.1016/j.apsusc.2011.06.114
  19. L. A. Deibler and K. O. Findley, J. Alloys Compd. 463, 173 (2008). https://doi.org/10.1016/j.jallcom.2007.09.017
  20. D. Pan, A. Inoue, T. Sakurai, and M. W. Chen, Proc. Natl. Acad. Sci. U.S.A. 105, 14769 (2008). https://doi.org/10.1073/pnas.0806051105

Cited by

  1. Effects of Fe substitution for Co on the thermal, magnetic, and mechanical properties of the Co-Fe-B-Si-Mo alloy system vol.72, pp.1, 2018, https://doi.org/10.3938/jkps.72.171