DOI QR코드

DOI QR Code

Study on Physiological Summation in Peripheral Retina for Eccentric Viewing Training

중심외주시 훈련용 주변부 망막의 생리적 가중에 관한 연구

  • Received : 2013.11.12
  • Accepted : 2013.12.14
  • Published : 2013.12.31

Abstract

Purpose: This study was to investigate peripheral vision and provide people with macular degeneration with a guideline for eccentric viewing training. Methods: 30 adult subjects with normal vision took part in this study. The lateral area of $20^{\circ}$ eccentricity from the fovea of right eye was only used to measure the physiological summation. The target was sinusoidal vertical gratings within a circular aperture. The critical points in spatial and temporal summation was found to compare each other for 0.7 cpd and 3.0 cpd, respectively. Results: Critical duration and contrast sensitivity for 0.7 cpd were 540 ms and 1.1, and 315 ms and 0.98 for 3.0 cpd respectively. The critical degrees and contrast sensitivity for 0.7 cpd were $11.3^{\circ}$ and 2.8, and $5^{\circ}$ and 2.63 for 3.0 cpd respectively. Conclusions: The critical point in peripheral vision reaches relatively faster than the one in central vision. It is recommended to train the peripheral retina under the lower spatial frequency more frequently for a short time than constantly for a long time.

목적: 황반변성을 가진 저시력 환자의 중심외주시 훈련에 사용되는 망막 주변부의 특성을 조사하여 재활치료용 주변시 연구에 도움이 되고자 한다. 방법: 정상 시각을 가진 30명의 성인 남녀의 우안을 대상으로 중심와에서 $20^{\circ}$ 이측으로 떨어진 망막 주변부의 생리적 가중을 측정하였다. 표적은 원형의 수직형 정현파였으며 공간주파수 0.7 cpd와 3.0 cpd를 사용하여 공간적 가중과 시간적 가중의 임계값을 비교하였다. 결과: 0.7 cpd에서 시간적 가중의 임계점은 540 ms, 대비감도는 1.1이었으며 3.0 cpd에서는 315 ms, 대비감도는 0.98이었다. 0.7 cpd에서 공간적 가중의 임계점은 $11.3^{\circ}$, 대비감도는 2.8이었으며, 3.0 cpd에서 임계점은 $5^{\circ}$, 대비감도는 2.63이었다. 결론: 주변시는 중심시보다 더 빨리 임계점에 도달한다. 중심외훈련시에는 저주파대역을 대상으로 긴 시간동안 훈련하기 보다 짧은 시간동안 자주 훈련하기를 권장한다.

Keywords

References

  1. Wertheim T, Peripheral visual acuity: Th. Wertheim, Trans. Dunsky, I.L. American Journal of Optometry and Physiological Optics. 1980;57(12):915-924. https://doi.org/10.1097/00006324-198012000-00005
  2. Maino JH, Carty RE. Part II. Victors: A model for the provision of low vision services to the partially sighted veteran. J Am Optom Assoc. 1983;54(11):991-993.
  3. Watson GR, De l'Aune WR, Stelmack JA, Maino JH, Long S. National survey of the impact of low vision device use among veterans. Optom Vis Sci. 1997;74(5):249-259. https://doi.org/10.1097/00006324-199705000-00019
  4. Fahle M, Schid M. Naso-temporal asymmetry of visual perception and of the visual cortex. Vis Res. 1988;28(2):293- 300. https://doi.org/10.1016/0042-6989(88)90157-5
  5. Cheung SH, Legge GE. Functional and cortical adaptations to central vision loss. Vis Neurosci. 2005;22(2):187-201.
  6. Rovamo J, Virsu V, Laurinen P, Hyvarinen L. Resolution of gratings oriented along and across meridians in peripheral vision. Invest Ophthalmol Vis Sci. 1982;23(5):666-670.
  7. Seo JM. Analysis of the visual function in low vision patients and normals in Canada, using contrast sensitivity. J Korean Oph Opt Soc. 2009;14(3):83-88.
  8. Luntinen O, Rovamo J, Nasanen R. Modelling the increase of contrast sensitivity with grating area and exposure time. Vis Res. 1995;35(16):2339-2346. https://doi.org/10.1016/0042-6989(94)00309-A
  9. Rovamo J, Luntinen O, Nasanen R. Modelling the dependence of contrast sensitivity on grating area and spatial frequency. Vis Res. 1993;33(18):2773-2788. https://doi.org/10.1016/0042-6989(93)90235-O
  10. Balas B, Nakano L, Rosenholtz R. A summary-statistic representation in peripheral vision explains visual crowding. J Vis. 2009;9(12):13.1-18.
  11. Tyler CW, Mcbride B. The morphonome image psychophysics software and a calibrator for macintosh systems. Spatial Vis. 1997;10(4):479-484. https://doi.org/10.1163/156856897X00410
  12. Nakayama K. The iconic bottleneck and the tenuous link between early visual processing and perception. Cambridge, England: Cambridge University Press, 1990;411- 422.
  13. Schumacher EH, Jacko JA, Primo SA, Main KL, Moloney KP, Kinzel EN et al. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. Restor Neurol Neurosci. 2008;26(4-5):391-402.
  14. Nilsson UL, Frennesson C, Nillsson SE. Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vis Res. 2003;43(16):1777-1787. https://doi.org/10.1016/S0042-6989(03)00219-0
  15. Schreckenbach U. Untersuchung zum Erfolg einer adaptierten Variante des exzentrischen Sehtrainings nach Nilsson bei Sehbehinderungen mit Zentralskotom. Diplomarbeit, Fachhochschule Jena, Germany. 2006.
  16. Sharpley R, Lam DM-L. Contrast sensitivity; Proceedings of the retina research foundation symposia, Vol 5. London: The MIT Press, 1993;201-213.

Cited by

  1. Change of Contrast Sensitivity in Peripheral Vision Following Eccentric Viewing Training vol.19, pp.1, 2014, https://doi.org/10.14479/jkoos.2014.19.1.99
  2. Correlation of Contrast Sensitivity with Transient Visual Recognition vol.23, pp.1, 2018, https://doi.org/10.14479/jkoos.2018.23.1.25