DOI QR코드

DOI QR Code

크라프트 리그닌의 염기 촉매 분해(BCD)에 의한 부산물의 조성 분석

The analysis of products from base-catalyzed depolymerization of kraft lignin

  • 김석주 (국립산림과학원 화학미생물과) ;
  • 김용식 (국립산림과학원 화학미생물과)
  • Kim, Seok Ju (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Kim, Yong Sik (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute)
  • 투고 : 2013.10.21
  • 심사 : 2013.11.27
  • 발행 : 2013.11.25

초록

본 연구는 크라프트 리그닌의 염기 촉매 분해(Based Catalyst Depolymerization, BCD)반응에서 생성되는 반응물의 화학적 특성을 조사하였다. 초임계 메탄올을 용매로 하고 염기 촉매로 사용한 NaOH의 농도를 7.5, 3.25, 6.13%로 변화를 주었다. BCD 반응물에서 불용성 고형 부산물, 수용성 부산물과 각 부산물에서 diethyl ether로 추출하여 DEE-1, DEE-2를 얻었고 그 화학적 조성을 분석하였다. 실험 결과 염기의 농도가 높아질수록 불용성 고형 부산물이 많이 생성된 반면 수용성 분액분의 수율은 낮아졌으나 DEE 추출분의 수율은 차이가 없었다. 불용성 부산물에서 추출한 DEE-1은 GC/MS 분석 결과 BHT외에 페놀성 화합물은 검출되지 않았다. 대부분의 저분자 리그닌 분해 산물은 DEE-2에서 GC/MS를 사용하여 30개 이상의 피크가 관찰되었고 21개 성분이 확인되었다. 7.5와 3.25%의 NaOH를 사용한 반응의 DEE-2 주성분은 catechol (20.3, 17.7%), 4-methylcatechol (18.2, 15.6%), 3-methoxycatechol (9.6, 14.5%), syringol (8.9, 10.9%)등으로 주로 catechol 계열의 화합물이었다. 1.63%의 NaOH를 사용한 반응의 DEE-2 주성분은 syringol (22.3%), isovanillic acid (12.6%), 3-methoxycatechol(12.1%), 4-methylcatechol (11.7) 등으로 나타났다. 염기의 농도가 저분자 페놀성 화합물들의 전체적인 수율에는 영향이 없었지만 3.25와 1.63%의 농도를 경계로 성분 조성에 큰 영향을 주는 것을 관찰할 수 있었다.

The based-catalyzed depolymerization (BCD) of kraft lignin isolated from black liquor which the chemical pulping of a mixture of various Southeast Asia hardwood chips was carried out in a batch reactor in the presence of different NaOH concentrations with supercritical methanol. The S:G ratio of the kraft lignin determined by pyrolysis-GC/MS analysis turned out roughly 1.4:1 and main products were vanillic acid, syringol and 3-methoxy catechol. The diethyl ether extracts as phenolic monomers from BCD reaction were produced similar yield among different NaOH concentrations. The 21 compounds were identified by GC/MS analysis in all experiments and major products were catechol, 3-methoxycatechol, 4-methylcatechol, syringol and isovanillic acid. However, it had been shown to be different monomer contents depending on the dosage of NaOH. Catechol, 4-methylcatechol and 3-methoxycatechol were shown to be the dominant monomer from BCD reaction using 7.5 and 3.25% of NaOH concentration whereas syringol, isovanillic acid, 3-methoxycatechol and 4-methylcatechol were determined to be the most typical products under the condition of 1.63% NaOH.

키워드

참고문헌

  1. Silva, E. A. B., M. Zabkova, J. D. Araujo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues. 2009. An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem. Eng. Res. Des. 87(9): 1276-1292. https://doi.org/10.1016/j.cherd.2009.05.008
  2. Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13): 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
  3. Kleinert, M. and T. Barth. 2008. Phenols from lignin. Chem. Eng. Technol. 31(5): 736-745. https://doi.org/10.1002/ceat.200800073
  4. Kalda, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, 2002, Lignin-based carbon fiber for composite fiber applications. Carbon 40: 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
  5. Fengel, D., and G. Wegener. 1989. Wood:chemistry, ultrastructure, reactions. Walter de Gruyter. pp. 132-135.
  6. Pandey, M. P., and C. S. Kim. 2011. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34(1): 29-41. https://doi.org/10.1002/ceat.201000270
  7. Vigneault, A., D. K. Johnson, and E. Chornet. 2007. Base-catalyzed depolymerization of lignin: separation of monomers. Can. J. Chem. Eng. 85: 906-916.
  8. TAPPI method T 222 om-02. 2004. Acid-insoluble lignin in wood and pulp. TAPPI Press, Atlanta, USA.
  9. Roberts, V. M., V. Stein, T. Reiner, A. Lemonidou, X. Li, and J. A. Lercher. 2011. Towards quantitative catalytic lignin depolymerization. Chem. Eur. J. 17: 5939-5948. https://doi.org/10.1002/chem.201002438
  10. Shabtai, J. S., W. W. Zmierczak, and E. Chornet. 1999. "Process for conversion of lignin to reformulated hydrocarbon". U.S. Patent 5959167.
  11. Shabtai, J. S., W. W. Zmierczak, and E. Chornet. 2001. "Process for conversion of lignin to reformulated, partially oxygenated gasoline". U.S. patent 6172272.
  12. Harman-Ware, A. E., M. Crocker, A. P. Kaur, M. S. Meier, D. Kato, and B. Lynn. 2013. Pyrolysis-GC/MS of sinapyl and coniferyl alcohol. J. Anal. appl. Pyrolysis. 99: 161-169. https://doi.org/10.1016/j.jaap.2012.10.001
  13. del Rio, J. C., A. Gutierrez, J. Romero, M. J. Martinez, and A. T. Martinez. 2001. Identification of residual lignin markers in eucalypt kraft pulps by PY-GC/MS. J. Anal. appl, Pyrolysis. 58-59: 425-439. https://doi.org/10.1016/S0165-2370(00)00126-1
  14. Ida Brodin. 2009. Chemical properties and thermal behavior of kraft lignins, Licentiate Thesis. KTH Chemical science and engineering. p. 30.
  15. Zakzeski, J., P. C. A. Bruijinincx, A. L. Jogerius, and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110: 3552-3559. https://doi.org/10.1021/cr900354u
  16. Miller, J. E., L. Evans, A. Littlewolf, and D. E. Trudell. 1999. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel 78: 1363-1366. https://doi.org/10.1016/S0016-2361(99)00072-1
  17. Miller, J. E., L. R. Evans, J. E. Mudd, and K. A. Brown. 2002. "Batch microreactor studies of lignin depolymerization by bases. 2. Aqueous solvents". report, Sandia National Laboratories, Albuquerque. NM.
  18. Leffingwell, J. C., E. D. Alford, and D. Leffingwell. 2013. Aroma constituents of a supercritical $CO_2$ extract of Kentucky Dark Fire-Cured Tobacco. Leffingwell Reports 5(1): 1-21. https://doi.org/10.1016/j.celrep.2013.09.033
  19. Faix, O., D. Meier, and I. Fortman. 1990. Thermal degradation products of wood: Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz als Roh-und Werkstoff 48: 281-285.
  20. Lima, C. F., L. C. A. barbosa, C. R. Marcelo, F. O. Silverio, and J. L. Colodette. 2008. Comparison between analytical pyrolysis and nitrobenzene oxidation for determination of syringyl/guaiacyl ratio in Eucalyptus spp. Lignin. BioResources 3(3): 701-712.