DOI QR코드

DOI QR Code

Characterization of Crosslinks of Maleic Anhydride-Grafted EPDM/Zinc Oxide Composite Using Dichloroacetic Acid/Toluene Cosolvent and Extraction Temperature

디클로로아세트산/톨루엔 공용매와 추출 온도를 이용한 무수말레산-그래프트 EPDM/산화 아연 복합체의 가교 특성 분석

  • Received : 2013.10.23
  • Accepted : 2013.11.21
  • Published : 2013.12.31

Abstract

Crosslink characteristics of maleic anhydride-grafted EPDM (MAH-g-EPDM)/zinc oxide composite were investigated by weight losses after dichloroacetic acid (DCA)/toluene cosolvent extraction at different temperatures and by measurement of crosslink densities. The chemical changes were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The weight losses by extraction at high temperature ($90^{\circ}C$) were remarkably greater than those at room temperature and those by DCA/toluene cosolvent extraction were greater than those by toluene one by more than 5 times. The crosslink densities were measured after the solvent extraction, and the second crosslink densities were higher than the first ones. The first crosslink density was lower when the extraction temperature was high, and it was much lower for the toluene extraction than for the DCA/toluene cosolvent extraction. The second crosslink density of the sample extracted with DCA/toluene cosolvent was greater than that extracted with toluene. The extracted components were depending on the extraction solvents and temperatures, for example; only strong crosslinked networks were remained when extracting with DCA/toluene cosolvent at high temperature, while only uncrosslinked polymer chains were extracted when extracting with toluene at room temperature. Therefore, crosslink characteristics of the MAH-g-EPDM/zinc oxide composite can be analyzed by comparison of the extracted components according to the extraction solvents and temperatures and by measurement of successive crosslink densities.

무수말레산-그래프트 EPDM (MAH-g-EPDM)/산화아연 복합체를 디클로로아세트산(DCA)/톨루엔 공용매로 처리하고 추출 온도에 따른 무게 감소와 가교밀도 측정을 이용하여 가교 특성을 조사하였다. 감쇠전반-후리에변환 적외선분광법(ATR-FTIR)을 이용하여 화학적 변화를 분석하였다. 상온 추출보다 고온($90^{\circ}C$) 추출에 의한 무게 감소가 월등히 높았으며, DCA/톨루엔 공용매 추출에 의한 무게 감소는 톨루엔 추출에 의한 무게 감소보다 5배 이상 높았다. 용매 추출 후 가교밀도를 측정하였으며, 1차 가교밀도보다 2차 가교밀도가 높았다. 1차 가교밀도는 추출온도가 높은 경우 더 낮았고 DCA/톨루엔 공용매로 추출한 것이 톨루엔으로 추출한 것보다 훨씬 낮았다. 2차 가교밀도는 DCA/톨루엔 공용매로 추출한 것이 톨루엔으로 추출한 것보다 높았다. 고온에서 DCA/톨루엔 공용매로 추출하면 강한 가교 그물망만 남는 반면, 상온에서 톨루엔으로 추출하면 미가교 고분자 사슬이 추출되는 등 추출 용매와 온도에 따라 추출되는 성분이 달랐다. 따라서 추출 용매와 온도에 따른 추출 성분의 비교와 연속 가교밀도 측정에 의해 MAH-g-EPDM/산화아연 복합체의 가교 특성을 분석할 수 있다.

Keywords

References

  1. S.-S. Choi and H.-S. Chung, "Influence of filler and cure systems on whitening of EPDM composites by formation of metal salt", Elast. Compos., 47, 210 (2012). https://doi.org/10.7473/EC.2012.47.3.210
  2. Q. Zhao, X. Li, and J. Gao, "Aging behavior and mechanism of ethylene-propylene-diene monomer (EPDM) rubber in fluorescent UV/condensation weathering environment", Polym. Degrad. Stab., 94, 339 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.12.007
  3. Q. Zhao, X. Li, J. Gao, and Z. Jia, "Evaluation of ethylene-propylene-diene monomer(EPDM) aging in UV/condensation environment by principal component analysis (PCA)", Mater. Lett., 63, 1647 (2009). https://doi.org/10.1016/j.matlet.2009.03.039
  4. H. Yu, G. Xu, X. Shen, X. Yan, C. Hu, and Y. Wang, "Corrosion resistance and infrared emissivity properties of EPDM (EPDM-g-MAH) film on low infrared emissivity PU/Cu coating" Electrochim. Acta., 55, 1843 (2010). https://doi.org/10.1016/j.electacta.2009.10.077
  5. Y.-W Chang, J. K. Mishra, S.-K Kim, and D.-K Kim, "Effect of supramolecular hydrogen bonded network on the properties of maleated ethylene propylene diene rubber/maleated high density polyethylene blend based thermoplasticelastomer", Mater Lett., 60, 3118 (2006). https://doi.org/10.1016/j.matlet.2006.02.055
  6. S. Saikrasun and T. Amornsakchai, "Self-reinforcing elastomer composites based on polyolefinic thermoplastic elastomer and thermotropic liquid crystalline polymer", J. Appl. Polym. Sci., 107, 2375 (2008). https://doi.org/10.1002/app.27092
  7. C. Yi, Z. Peng, H. Wang, M. Li, and C. Wang, "Synthesis and characteristics of thermoplastic elastomer based on polyamide-6", Polym. Int., 60, 1728 (2011). https://doi.org/10.1002/pi.3140
  8. J. Markarian, "Thermoplastic elastomer compounds continue upward trend", Plast., Addti. Compound., 10, 38 (2008).
  9. D. Yamaguchi, M. Cloitre, P. Panine, and L. Leibler, "Phase behavior and viscoelastic properties of thermoplastic elastomer gels based on ABC triblock copolymers", Macromolecules, 38, 7798 (2005). https://doi.org/10.1021/ma050294e
  10. P. Pasbakhsh, H. Ismail, M. N. Ahmad Fauzi, and A. Abu Bakar, "Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes", Polym. Test., 28, 548 (2009). https://doi.org/10.1016/j.polymertesting.2009.04.004
  11. G. M. O. Barra, J. S. Crespo, J. R. Bertolino, V. Soldi, and A. T. Nunes Pires, "Maleic anhydride grafting on EPDM : Qualitative and quantitative determination", J. Braz. Chem. Soc., 10, 31 (1999). https://doi.org/10.1590/S0103-50531999000100006
  12. C. Shao, G. Xu, X. Shen, H. Yu, and X. Yan, " Infrared emissivity and corrosion-resistant property of maleic anhydride grafted ethylene-propylene-diene terpolymer (EPDM-g-MAH)/Cu coatings", Surf. Coat. Technol., 204, 4075 (2010). https://doi.org/10.1016/j.surfcoat.2010.05.036
  13. W. S. Chow, A. A. Bakar, Z. A. Mohd Ishak, J. Karger-Kocsis, and U. S. Ishiaku, "Effect of maleic anhydride-grafted ethylene-propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites" Eur. Polym., 41, 687 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.041
  14. O. Grigoryeva and J. Karger-Kocsis, "Melt grafting of maleic anhydride onto an ethylene-propylene-iene terpolymer (EPDM)", Eur. Polym., 36, 1419 (2000). https://doi.org/10.1016/S0014-3057(99)00205-0
  15. C. D. Silva, B. Haidar, A. Vidal, J. M. Brendle, R. L. Dred, and L. Vidal, "Preparation of EPDM/synthetic montmorillonite nanocomposites by direct compounding", J. Mater. Sci., 40, 1813 (2005). https://doi.org/10.1007/s10853-005-0701-0
  16. S.-S Choi and S.-H Ha, "Water swelling behaviors of silica-reinforecd NBR composites in deionized water and salt solution", Ind. Eng. Chem., 16, 238 (2010). https://doi.org/10.1016/j.jiec.2010.01.052
  17. Y. K. Chae, W. Y. Kang, J.-H. Jang, and S.-S. Choi, "A simple NMR method to measure crosslink density of natural rubber composite", Polym. Test., 29, 953 (2010). https://doi.org/10.1016/j.polymertesting.2010.08.003
  18. M. E. Ries, M. G. Brereton, P. G. Klein, and P. Dounis, "A proton NMR investigation of crosslinks and entanglements in polyethylene networks and star polymers", Polym. Gel. Net., 5, 285 (1997). https://doi.org/10.1016/S0966-7822(97)00004-X
  19. J. Sohma, C. Qun, W. Yuanshen, X.-W. Qu, and M. Shiotani, "Solid-state high-resolution $^{13}C$-NMR study of crosslinks in heavily gamma-irradiated polyethylene original research Article", Rad. Phys. Chem., 37, 47 (1991).
  20. H.-M Kwon and S.-S Choi "Swelling behaviors of maleic anhydride-grafted EPDM by treatment with dichloroacetic acid", Elast. Compos., 48, 55 (2013). https://doi.org/10.7473/EC.2013.48.1.55
  21. B. Guo, F. Chen, Y. Lei, X. Liu, J. Wan, and D. Jia, "Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid", Appl. Surf. Sci., 255, 7329 (2009). https://doi.org/10.1016/j.apsusc.2009.03.092
  22. Z. Hrnjak-Murgic, J. Jelencic, M. Bravar, and M. Marovic, "Influence of the network on the interaction parameter in system EPDM vulcanizate-Solvent", J. Appl. Polym. Sci., 65. 991 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970801)65:5<991::AID-APP17>3.0.CO;2-V

Cited by

  1. Effects of ZnO content on microstructure and properties of maleated EPDM/zinc oxide composites vol.72, pp.5, 2015, https://doi.org/10.1007/s00289-015-1330-7