DOI QR코드

DOI QR Code

Preparation of Monodisperse Poly(Methacrylic acid) with a Water-Soluble Initiator by Solution Polymerization in the Aqueous Phase

수용액 내에서 수용성개시제를 이용한 단분산성 폴리메타크릴산의 용액중합

  • 문지연 (코스모신소재) ;
  • 정경호 (수원대학교 공과대학 신소재공학과) ;
  • 박문수 (수원대학교 공과대학 신소재공학과)
  • Received : 2013.10.28
  • Accepted : 2013.11.18
  • Published : 2013.12.31

Abstract

Solution polymerization was conducted with water-soluble methacrylic acid (MAA) as a monomer and potassium persulfate (KPS) as an initiator at a selected temperature between $70^{\circ}C$ and $90^{\circ}C$. When the ratio between MAA and water was reduced or initiator concentration increased, molecular weights decreased. Molecular weights of poly(methacrylic acid) (PMAA) showed nearly no dependence on reaction temperature. The Weissenberg effect was observed in most polymerization reactions, while its effect weakened at $90^{\circ}C$. The polydispersity index was less than 1.5 in most of the reactions. An increase in the stirring speed produced PMAAs with increasing molecular weights. When the stirring speed reached 800 rpm, we retrieved a monodisperse PMAA with both the number and weight average molecular weights of 791,000 g/mol. The glass transition temperature was found to be $162^{\circ}C$.

수용성 단량체인 메타크릴산 (MAA)을 단량체로 potassium persulfate (KPS)를 개시제로 이용하여 $70^{\circ}C$에서 $90^{\circ}C$ 사이의 선택된 온도에서 용액중합을 진행하였다. 물에 대한 메타크릴산의 농도가 감소하거나 개시제의 농도가 증가하면 분자량은 감소하였다. 중합반응온도는 폴리메타크릴산 (PMAA)의 분자량에 크게 영향을 미치지 않았다. Weissenberg 효과는 대부분의 반응온도에서 나타났으며, $90^{\circ}C$에서는 약하게 관찰되었다. 대부분의 중합반응에서 분산성지수는 1.5 이하로 관찰되었다. 교반속도가 증가하면서 분자량은 점진적으로 증가하다, 교반속도가 800 rpm에 이르면서 수평균 및 중량평균분자량이 동일하게 791,000 g/mol의 분자량을 갖는 단분산성의 PMAA가 구하여졌다. 유리전이온도는 $162^{\circ}C$로 측정되었다.

Keywords

References

  1. S. Beuermann, M. Buback, P. Hesse and I. Lacik, "Free-Radical Propagation Rate Coefficient of Nonionized Methacrylic Acid in Aqueous Solution from Low Monomer Concentrations to Bulk Polymerization", Macromolecules, 39, 184 (2006). https://doi.org/10.1021/ma051954i
  2. S. Beuermann, M. Buback, P. Hesse, R. A. Hutchinson, S. Kukuckova and I. Lacik, "Termination Kinetics of the Free-Radical Polymerization of Nonionized Methacrylic Acid in Aqueous Solution", Macromolecules, 41, 3513 (2008). https://doi.org/10.1021/ma7028902
  3. R. J. Minari, G. Caceros, P. Mandelli, M. M. Yossen, M. Gonzalez-Sierra, J. R. Vega and L. M. Gugliotta, "Semibatch Aqueous-Solution Polymerization of Acrylic Acid: Simultenaeous Control of Molar Masses and Reaction Temperature", Macromol. Reac. Eng., 5, 223 (2011). https://doi.org/10.1002/mren.201000059
  4. S. Muthukrishnan, E. H. Pan, M. H. Stenzel, C. Barner-Kowollik, T. P. Davis, D. Lewis and L. Barner, "Ambient Temperature RAFT Polymerization of Acrylic Acid Initiated with Ultraviolet Radiation in Aqueous Solution", Macromolecules, 40, 2978 (2007). https://doi.org/10.1021/ma0703094
  5. M. Buback, P. Hesse and I. Lacik, "Propagation Rate Coefficient and Fraction of Mid-Chain Radicals for Acrylic Acid in Aqueous Solution", Macromol. Rapid Commun., 28, 2049 (2007). https://doi.org/10.1002/marc.200700396
  6. I. Rintoul and C. Wandrey, "Magnetic field effects on the free radical solution polymerization of acrylamide", Polymer, 48, 1903 (2007). https://doi.org/10.1016/j.polymer.2007.02.002
  7. B. Grassel, G. Clisson, A. Khoukh and L. Billon, "Nitroxide-mediated radical polymerization of acrylamide in water solution", Euro. Polymer J., 44, 50 (2008). https://doi.org/10.1016/j.eurpolymj.2007.10.019
  8. P. Ulanski, E. Bothe, K. Hildenbrand and C. v. Sonntag, "Free-Redical-Induced Chain Breakage and Depolymerization of Poly(methacrylic acid): Equilibrium Polymerization in Aqueous Solution at Room Temperature", Chem. Eur. J., 6-21, 3922 (2000). https://doi.org/10.1002/1521-3765(20001103)6:21<3922::AID-CHEM3922>3.0.CO;2-2
  9. H. Mark, N. Bikales, C. Overberger and G. Menges, "Encyclopedia of Polym. Sci. & Eng", 2nd Ed., p. 560, 1989.
  10. I. Lacik, L. Ucnova, S. Kukuckova, M. Buback, P. Hesse and S. Beuermann, M. Buback, "Propagation Rate Coefficient of Free-Radical Polymerization of Partially and Fully Ionized Methacrylic Acid in Aqueous Solution", Macromolecules, 42, 7753 (2009). https://doi.org/10.1021/ma9013516
  11. J. Barth and M. Buback, "SP-PLP-EPR Study into the Termination Kinetics of Methacrylic Acid Radical Polymerization in Aqueous Solution", Macromolecules, 44, 1292 (2011). https://doi.org/10.1021/ma102278n
  12. S. Jiang, E. D. Sudo, V. L. Dimonie and M. S. El-Aasser, "Kinetics of Dispersion Polymerization of Methyl Methacrylate and n-Butyl Acrylate: Effect of Initiator Concentration", Macromolecules, 40, 4910 (2007). https://doi.org/10.1021/ma062679i
  13. N. F. G. Wittenberg, M. Buback and R. A. Hutchinson, "Kinetics and Modeling of Methacrylic Acid Radical Polymerization in Aqueous Solution", Macromol. React. Eng., 7, 267 (2013) https://doi.org/10.1002/mren.201200089
  14. S. Beuermann, M. Buback, P. Hesse, F. Kuchta, I. Lacik and A. M. van Herk, "Critically Evaluated Rate Coefficients for Free-radical Polymerization Part 6: Propagation Rate Coefficient of Methacrylic Acid in Aqueous Solution", Pure Appl. Chem., 79-8, 1463 (2007). https://doi.org/10.1351/pac200779081463